Experimental data from static and dynamic tests on [Formula: see text] direct models of simply supported, one- and two-cell, box girder bridges are presented. Variation of flexural and torsional stiffnesses and dynamic characteristics, such as the natural frequency of vibrations and damping ratios of the bridge models at different levels of cracking damage, are examined; in turn, these dynamic characteristics can be used to estimate the cracking damage in the bridge. The physical model proved to be an adequate tool for the study of static and dynamic responses of box girder bridges at all load levels. Key words: box girder bridges, direct physical models, damping ratio, flexural and torsional stiffnesses, level of cracking damage, load–deformation response, load distribution characteristics, longitudinal and transverse strains, natural frequency of vibrations, simulated OHBDC truck.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.