Gene-directed enzyme prodrug therapy (GDEPT) is a refinement of cancer chemotherapy that generates a potent cell-killing drug specifically in tumor cells by enzymatic activation of an inert prodrug. We describe in vivo studies that evaluate the efficacy and safety of intratumoral (i.t.) injection of an adenovirus vector (CTL102) expressing Escherichia coli nitroreductase (NTR) combined with systemic prodrug (CB1954) treatment. A single i.t. injection of CTL102 (7.5 x 10(9) to -2 x 10(10) particles) followed by CB1954 treatment produced clear anti-tumor effects in subcutaneous (s.c.) xenograft models of four cancers that are likely candidates for GDEPT (i.e., primary liver, head and neck, colorectal and prostate). Virus dose-response studies (s.c. liver model) revealed a steep increase and subsequent rapid plateauing of both NTR gene delivery and anti-tumor efficacy. Evidence of minor virus spread (toxicity) was observed in a s.c. head and neck xenograft model. This was eliminated by passive immunization with neutralizing anti-Ad5 antibodies prior to virus injection without reducing the magnitude of the anti-tumor effect. Preexisting anti-Ad5 neutralizing antibodies may therefore be an advantage rather than an issue in the clinical use of this new therapy.
There is an urgent need for improved therapies for inoperable metastatic colon cancer. Gene-directed enzyme prodrug therapy (GDEPT) using adenovirus vectors works well in preclinical models of this disease, but successful clinical application is hampered by an inability to construct vectors that express at high levels in infected tumor cells but not in infected normal cells. Constitutive activation of beta-catenin-dependent gene expression is almost certainly a key causative event in the genesis of colon and some other cancers. Here we have exploited this oncogenic defect to design a synthetic promoter, CTP1, that, in contrast to currently available tumor-selective promoters, is both highly active in cancer cells and highly cancer-cell-specific. CTP1 directs high-level beta-galactosidase expression in freshly isolated biopsies of secondary colon cancer, but is not detectably active in associated normal liver tissue. We also demonstrate that CTP1 can direct high-level, tumor-specific therapeutic gene expression in vivo. Intratumoral injection of an adenovirus vector encoding Escherichia coli nitroreductase driven by CTP1 efficiently sensitized SW480 xenografts to the prodrug CB1954, whereas systemic vector and prodrug administration produced no apparent signs of toxicity. CTP1 may form the basis for effective, targeted gene therapy of metastatic colon cancer and other tumors with deregulated beta-catenin/T cell factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.