Background: Acute cholangitis is a life-threatening bacterial infection of the biliary tract. Main focus of this study was to create a useful risk prediction model that helps physicians to assign patients with acute cholangitis into different management groups. Methods: 981 cholangitis episodes from 810 patients were analysed retrospectively at a German tertiary center.
One of the goals of medical research in the area of dementia is to correlate images of the brain with clinical tests. Our approach is to start with the images and explain the differences and commonalities in terms of the other variables. First, we cluster Positron emission tomography (PET) scans of patients to form groups sharing similar features in brain metabolism. To the best of our knowledge, it is the first time ever that clustering is applied to whole PET scans. Second, we explain the clusters by relating them to non-image variables. To do so, we employ RSD, an algorithm for relational subgroup discovery, with the cluster membership of patients as target variable. Our results enable interesting interpretations of differences in brain metabolism in terms of demographic and clinical variables. The approach was implemented and tested on an exceptionally large data collection of patients with different types of dementia. It comprises 10 GB of image data from 454 PET scans, and 42 variables from psychological and demographical data organized in 11 relations of a relational database. We believe that explaining medical images in terms of other variables (patient records, demographic information, etc.) is a challenging new and rewarding area for data mining research.
One of the goals of medical research in the area of dementia is to correlate images of the brain with clinical tests. Our approach is to start with the images and explain the differences and commonalities in terms of the other variables. First, we cluster Positron emission tomography (PET) scans of patients to form groups sharing similar features in brain metabolism. To the best of our knowledge, it is the first time ever that clustering is applied to whole PET scans. Second, we explain the clusters by relating them to non-image variables. To do so, we employ RSD, an algorithm for relational subgroup discovery, with the cluster membership of patients as target variable. Our results enable interesting interpretations of differences in brain metabolism in terms of demographic and clinical variables. The approach was implemented and tested on an exceptionally large data collection of patients with different types of dementia. It comprises 10 GB of image data from 454 PET scans, and 42 variables from psychological and demographical data organized in 11 relations of a relational database. We believe that explaining medical images in terms of other variables (patient records, demographic information, etc.) is a challenging new and rewarding area for data mining research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.