In flex-tensional piezoactuators, due to the low displacement of piezostacks, a compliant mechanism is used to amplify displacement of piezostack. In this paper, optimization of a compliant mechanism with corner-filleted flexure hinges is carried out using real-coded genetic algorithms (GAs) to avoid trapping in local optimums. The objective functions are displacement amplification and stiffness of mechanism and design variables are cross-sectional size and material used. The constraints which are applied on mechanism are based on piezostack dimensions and manufacturing limits. Displacement amplification and stiffness are calculated using strain energy and Castigliano’s displacement theorem.
Electric arc furnaces are used to make steel from scrap iron in steel industry. Nowadays, the aim of more researches in this area is to increase yield of furnace and it’s compatibility with environment. One of the methods to achieve these purposes is to control the off-gas system as relative pressure in furnace would be kept negative. Because the combustion gases inside the furnace must not leak into the plant environment. However for preventing of loss of energy, the amount of this negative number must be small. In this paper, new intelligent control method named fuzzy emotional control, applied to off-gas system to control the relative pressure in the furnace and its result is compared to other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.