Several applications of PIC simulations for understanding basic physics phenomena in low-temperature plasmas are presented: capacitive radiofrequency discharges in Oxygen, dusty plasmas and negative ion sources for heating of fusion plasmas. The analysis of these systems based on their microscopic properties as accessible with PIC gives improved insight into their complex behavior. These studies are results of joint efforts over about one decade
This paper describes the recent progress in divertor simulation research using the GAMMA 10/PDX tandem mirror towards the development of divertors in fusion reactors. During a plasma flow generation experiment in the end cell of the GAMMA 10/PDX, ICRF heating in the anchor cell successfully extended the particle flux up to 3.3 × 1023 m2 s−1. Superimposing the short pulse of the ECH also attained a maximum heat flux of ~30 MW m−2. We have succeeded in achieving and characterizing the detachment of the high-temperature plasma, which is equivalent to the SOL plasma of tokamaks, by using the divertor simulation experimental module (D-module) in the GAMMA 10/PDX end cell, in spite of using a linear device with a short magnetic field line connection length. Various gases (Ar, Xe, Ne and N2) are examined to evaluate the effect of radiation cooling against the plasma flow at the MW m−2 level in the divertor simulation region and the following results are obtained: (i) Xe gas was most effective in the reduction of heat and particle fluxes (1%, 3%, respectively) and has a stronger effect on electron cooling (down to ~1.6 eV) in the used gas species. (ii) Ne gas was less effective. On the other hand, (iii) N2 gas showed more favorable effects than Ar in the lower pressure range. These results will contribute to the progress in detached plasma operation and in clarifying the radiation cooling mechanism towards the development of future divertors.
Recently, in large-scale hydrogen negative ion sources, the experimental results have shown that ion-ion plasma is formed in the vicinity of the extraction hole under the surface negative ion production case. The purpose of this paper is to clarify the mechanism of the ion-ion plasma formation by our three dimensional particle-in-cell simulation. In the present model, the electron loss along the magnetic filter field is taken into account by the “τ///τ⊥ model.” The simulation results show that the ion-ion plasma formation is due to the electron loss along the magnetic filter field. Moreover, the potential profile for the ion-ion plasma case has been looked into carefully in order to discuss the ion-ion plasma formation. Our present results show that the potential drop of the virtual cathode in front of the plasma grid is large when the ion-ion plasma is formed. This tendency has been explained by a relationship between the virtual cathode depth and the net particle flux density at the virtual cathode.
A meniscus of plasma-beam boundary in H− ion sources largely affects the extracted H− ion beam optics. Although it is hypothesized that the shape of the meniscus is one of the main reasons for the beam halo observed in experiments, a physical mechanism of the beam halo formation is not yet fully understood. In this letter, it is first shown by the 2D particle in cell simulation that the H− ions extracted from the periphery of the meniscus cause a beam halo since the surface produced H− ions penetrate into the bulk plasma, and, thus, the resultant meniscus has a relatively large curvature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.