INTRODUCTIONThe timing of the transition from vegetative growth to flowering is of paramount importance in agriculture, horticulture, and plant breeding because flowering is the first step of sexual reproduction. Studies to understand how this transition is controlled have occupied countless physiologists during the past half century and have produced an almost unmanageably large amount of information (Bernier et al., 1981a; Halevy, 1985 Halevy, -1989Bernier, 1988;Kinet, 1993).A majority of plants use environmental cues to regulate the transition to flowering because all individuals of a species must flower synchronously for successful outcrossing and because all species must complete their sexual reproduction under favorable externa1 conditions. Any environmental variables exhibiting regular seasonal changes are potential factors that control the transition to flowering. The major factors are photoperiod, temperature, and water availability. Plants that do not require a particular photoperiod or temperature to flower, i.e., the so-called "autonomous-flowering" plants, are usually sensitive to irradiance. The environmental factors are perceived by different parts of the plant. Photoperiod and irradiance are perceived mainly by mature leaves in intact plants. Temperature is perceived by all plant parts, although low temperature (vernalization) is often perceived mainly by the shoot apex. Water availability is perceived by the root system.There are strong interactions between these different factors, so that each factor can change the threshold value for the effectiveness of the others. Plants, as opportunists, will thus make use of a different critical factor in different environments. Melilotus officinalis, for example, is a biennial with a vernalization requirement in temperate zones and an annual long-day (LD) plant with no cold requirement in arctic regions. In photoperiodic species, such as the short-day (SD) plant Pharbitis nil and the LD plant Silene armeria, flowering in unfavorable photoperiods can be caused by changing temperature, irradiance, or nutrition or by removing the roots. Similarly, in some late-flowering mutants of Arabidopsis, vernalization and an increase in the proportion of far-red light in the light source can substitute for one another in promoting the transition to flowering (Martínez-Zapater and Somerville, 1990; Bagnall, 1992). Clearly, there are alternate pathways to flowering in most, ifTo whom correspondence should be addressed. not all, plants. Because the different flowering-promoting factors are perceived by different parts of the plant, this implies that these parts interact and that the fate of the apical meristem-remaining vegetative or becoming reproductive-is controlled by an array of long-distance signals from the entire plant.The ability of subsets of plant parts to control flowering is also underscored by the fact that some plants may flower almost normally after complete defoliation (Hyoscyamus niger, red Perilla, Chenopodium amaranticolor) or derooting (Perilla, Loli...
Background: Arabidopsis thaliana is now the model organism for genetic and molecular plant studies, but growing conditions may still impair the significance and reproducibility of the experimental strategies developed. Besides the use of phytotronic cabinets, controlling plant nutrition may be critical and could be achieved in hydroponics. The availability of such a system would also greatly facilitate studies dealing with root development. However, because of its small size and rosette growth habit, Arabidopsis is hardly grown in standard hydroponic devices and the systems described in the last years are still difficult to transpose at a large scale. Our aim was to design and optimize an up-scalable device that would be adaptable to any experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.