One of the side effects of cisplatin therapy in malignant neoplasms is ototoxicity. This effect shows a wide inter-individual range which is more variable than the pharmacokinetic parameters. Oxidative stress has been implicated in cisplatin ototoxicity. The glutathione S-transferase (GST) supergene family encodes isoenzymes that appear to be critical in protection against oxidative stress. Certain GST loci are polymorphic, demonstrating alleles that are null (GSTM1 and GSTT1), encode low-activity variants (GSTP1) or are associated with variable inducibility (GSTM3). The aim of our study was to investigate genetic risk factors involved in the ototoxicity of cisplatin and to determine whether the polymorphisms in five GST genes affect the individual risk of ototoxicity by cisplatin. Two groups of patients were analyzed in this study: group H, 20 patients early and highly sensitive to the ototoxicity of cisplatin; and group N, 19 patients with no hearing impairment under comparable doses of the drug. We found a protective effect for the GSTM3*B allele with a frequency of 0.18 in the group with normal hearing after therapy versus 0.025 in the group with hearing impairment. (chi2=5.37; p=0.02).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.