Sarcoidosis is a highly variable, systemic granulomatous disease of hitherto unknown aetiology. The GenPhenReSa (Genotype-Phenotype Relationship in Sarcoidosis) project represents a European multicentre study to investigate the influence of genotype on disease phenotypes in sarcoidosis.The baseline phenotype module of GenPhenReSa comprised 2163 Caucasian patients with sarcoidosis who were phenotyped at 31 study centres according to a standardised protocol.From this module, we found that patients with acute onset were mainly female, young and of Scadding type I or II. Female patients showed a significantly higher frequency of eye and skin involvement, and complained more of fatigue. Based on multidimensional correspondence analysis and subsequent cluster analysis, patients could be clearly stratified into five distinct, yet undescribed, subgroups according to predominant organ involvement: 1) abdominal organ involvement, 2) ocular-cardiac-cutaneous-central nervous system disease involvement, 3) musculoskeletal-cutaneous involvement, 4) pulmonary and intrathoracic lymph node involvement, and 5) extrapulmonary involvement.These five new clinical phenotypes will be useful to recruit homogenous cohorts in future biomedical studies.
The hereditary non-polyposis colorectal cancer (HNPCC)-syndrome is the most common form of hereditary colorectal cancers, and accounts for 2-7% of the total colorectal cancer burden. Since there are no single clinical features specific for HNPCC, diagnosis is based on family history (Amsterdam or Bethesda criteria) and is confirmed by the detection of a mutation in one of the responsible mismatch repair (MMR) genes. Two types of HNPCC-families can be distinguished. Type I HNPCC tumors are exclusively located in the colon, whereas in Type II HNPCC patients, extracolonic tumors are present in the stomach, endometrium, ovary, and urinary tract. The identification of the human homologues of yeast mismatch repair genes hMSH2, hMSH3, hMSH6, hMLH1, hMLH3, hPMS1 (scMLH2), and hPMS2 (scPMS1) offered the prospect of genetic screening leading to an extensive search for mutations in HNPCC-families. The majority of the alterations have been found in hMSH2 (40%) and hMLH1 (40%) genes. Mutations in the other MMR genes appear rare, absent, and/or associated with atypical families (1-5%). As a result of the mismatch repair deficiency, replication misincorporation errors accumulate, resulting in a mutator phenotype. Diagnosis of HNPCC-associated replication errors is most easily determined by the examination of a panel of the National Cancer Institute (NCI)-recommended simple repeated sequences (microsatellites), combined with immunohistochemical analysis. Although the exact molecular mechanism of the tumor development in these patients remains poorly understood, the identification of tumors that harbor a microsatellite instability has clinical and prognostic implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.