This paper is based on the information gathered within the Multi-Material Micro-Manufacture (4M) Network activities in the Processing of Metals Division (Task 7.2 ‘Tooling’) ( www.4m-net.org ). The aim of the task involves a systematic analysis of the partners' expertise in different microtechnologies for processing tooling inserts made of metal. The following technologies have been analysed: micromilling, micro-electrodischarge machining (EDM, including wire-EDM, sinking-EDM, and EDM-milling), laser micromachining, electroforming, and electrochemical milling (ECF) (an electrochemical machining innovative process proposed by HSG-IMAT). Considered tool-insert materials are nickel for electroforming, stainless steel for ECF, and tool steel (AISI H13) for all other processes. Typical features (ribs, channels, pins, and holes) required by micro-optics, microfluidics, and sensor and actuator applications have been selected to form the benchmark part and to carry out this analysis. The results provide a global comparison between the micromanufacturing processes mentioned earlier in terms of technical capabilities and cost effectiveness of different feature machinings. As a second result, the current limitations of these technologies concerning feature sizes, surface finish, aspect ratios, etc. have been identified. The main conclusion drawn is the absence of a consolidated technology to produce three-dimensional free-form shapes smaller than 100–200 μm to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.