Objective: We attempt to evaluate how the European treatment guides are implemented in a clinic hospital in Targu Mures and if those rules could be adopted as they are or must be adapted to our national specificity. Methods: For a number of 441 patients included in the study, the electronic prospectively maintained archive of 3rd Surgery was interrogated for: age, preoperative colonoscopy, postoperative colonoscopies, chemo-radiotherapy enrollment, stage of the disease, type of surgery. Local and regional relapses were assessed and their incidence was related to type of surgery. Survival analysis was done in a simplified manner and differentiated for age below and above 75 years. Results: Patient's age distribution revealed a deviation to the right compared with a normal distribution with a median off 64.76±11.47. Colonoscopy was done in only 65 cases, exclusive preoperatively. Chemoradiotherapy was administered in 168 cases, only 12 of them initiated preoperatively. The type of surgery performed was found positively correlate with the stage of the disease. The survival probability for the patients in this study showed a 50% survival rate at 1 year and only 2% at 5 years. Conclusions: Passive screening age in CRC should be decreased to 55 years. Stage 3 and 4 of disease for CRC are over 70% of cases, like 20 years ago. Survival rate in CRC is far lower than other studies. Integrated CRC management and European practical guides are still "in wishing" stage.
Acta Technologica Agriculturae 1/2016Dušan Páleš et al.The most effective way for determination of curves for practical use is to use a set of control points. These control points can be accompanied by other restriction for the curve, for example boundary conditions or conditions for curve continuity (Sederberg, 2012). When a smooth curve runs only through some control points, we refer to curve approximation. The B-spline curve is one of such approximation curves and is addressed in this contribution. A special case of the B-spline curve is the Bézier curve Rédl et al., 2014). The B-spline curve is applied to a set of control points in a space, which were obtained by measurement of real vehicle movement on a slope (Rédl, 2007(Rédl, , 2008. Data were processed into the resulting trajectory (Rédl, 2012;Rédl and Kučera, 2008). Except for this, the movement of the vehicle was simulated using motion equations (Rédl, 2003;Rédl and Kročko, 2007). B-spline basis functionsBézier basis functions known as Bernstein polynomials are used in a formula as a weighting function for parametric representation of the curve (Shene, 2014). B-spline basis functions are applied similarly, although they are more complicated. They have two different properties in comparison with Bézier basis functions and these are: 1) solitary curve is divided by knots, 2) basis functions are not nonzero on the whole area. Every B-spline basis function is nonzero only on several neighbouring subintervals and thereby it is changed only locally, so the change of one control point influences only the near region around it and not the whole curve.These numbers are called knots, the set U is called the knot vector, and the half-opened interval 〈u i , u i + 1 ) is the i-th knot span. Seeing that knots u i may be equal, some knot spans may not exist, thus they are zero. If the knot u i appears p times, hence u i = u i + 1 = ... = u i + p -1 , where p >1, u i is a multiple knot of multiplicity p, written as u i (p). If u i is only a solitary knot, it is also called a simple knot. If the knots are equally spaced, i.e. (u i + 1 -u i ) = constant, for every 0 ≤ i ≤ (m -1), the knot vector or knot sequence is said uniform, otherwise it is non-uniform.Knots can be considered as division points that subdivide the interval 〈u 0 , u m 〉 into knot spans. All B-spline basis functions are supposed to have their domain on 〈u 0 , u m 〉. We will use u 0 = 0 and u m = 1.To define B-spline basis functions, we need one more parameter k, which gives the degree of these basis functions. Recursive formula is defined as follows:This definition is usually referred to as the Cox-de Boor recursion formula. If the degree is zero, i.e. k = 0, these basis functions are all step functions that follows from Eq. (1). N i, 0 (u) = 1 is only in the i-th knot span 〈u i , u i + 1 ). For example, if we have four knots u 0 = 0, u 1 = 1, u 2 = 2 and u 3 = 3, knot spans 0, 1 and 2 are 〈0, 1), 〈1, 2) and 〈2, 3), and the basis functions of degree 0 are N 0, 0 (u) = 1 on interval 〈0, 1) Acta In this co...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.