BackgroundCerebral and cardiac blood flow are important to the pathophysiology and development of cerebro‐ and cardiovascular diseases. The purpose of this study was to investigate the age dependence of normal cerebral and cardiac hemodynamics in children and adults over a broad range of ages.Methods and ResultsOverall, 52 children (aged 0.6–17.2 years) and 30 adults (aged 19.2–60.7 years) without cerebro‐ and cardiovascular diseases were included in this study. Intracranial 4‐dimensional flow and cardiac 2‐dimensional phase‐contrast magnetic resonance imaging were performed for all participants to measure flow parameters in the major intracranial vessels and aorta. Total cerebral blood flow (TCBF), cardiac and cerebral indexes, brain volume, and global cerebral perfusion (TCBF/brain volume) were evaluated. Flow analysis revealed that TCBF increased significantly from age 7 months to 6 years (P<0.001) and declined thereafter (P<0.001). Both cardiac and cerebral indices declined with age (P<0.001). The ratio of TCBF to ascending aortic flow declined rapidly until age 18 years (P<0.001) and remained relatively stable thereafter. Age‐related changes of cerebral vascular peak velocities exhibited a trend similar to TCBF. By comparison, aortic peak velocities maintained relatively high levels in children and declined with age in adults (P<0.001). TCBF significantly correlated with brain volume in adults (P=0.005) and in 2 pediatric subgroups, aged <7 years (P<0.001) and 7 to 18 years (P=0.039).ConclusionsCerebral and cardiac flow parameters are highly associated with age. The findings collectively highlight the importance of age‐matched control data for the characterization of intracranial and cardiac hemodynamics.
BACKGROUND AND PURPOSE:The role of intracranial hemodynamics in the pathophysiology and risk stratification of brain AVMs remains poorly understood. The purpose of this study was to assess the influence of Spetzler-Martin grade, clinical history, and risk factors on vascular flow and tissue perfusion in cerebral AVMs.
Regional intracranial atherosclerotic lesions not only alter distal arterial flow but also significantly affect ipsilateral collateral arterial hemodynamics.
The morbidity associated with cerebral AVM rupture appeared to be higher in our study than previously reported. Morbidity from AVM rupture should be considered as an important factor, together with variables such as risk of AVM rupture and procedural risk, in determining the optimal treatment strategy for unruptured cerebral AVMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.