The very low-pressure plasma Spray (VLPPS) process has been developed with the aim of depositing uniform and thin coatings with coverage of a large area by plasma spraying. At typical pressures of 100-200 Pa, the characteristics of the plasma jet change compared to conventional low-pressure plasmaspraying processes (LPPS) operating at 5-20 kPa. The combination of plasma spraying at low pressures with enhanced electrical input power has led to the development of the LPPS-TF process (TF = thin film). At appropriate parameters, it is possible to evaporate the powder feedstock material providing advanced microstructures of the deposits. This technique offers new possibilities for the manufacturing of thermal barrier coatings (TBCs). Besides the material composition, the microstructure is an important key to reduce thermal conductivity and to increase strain tolerance. In this regard, columnar microstructures deposited from the vapor phase show considerable advantages. Therefore, physical vapor deposition by electron beam evaporation (EB-PVD) is applied to achieve such columnar-structured TBCs. However, the deposition rate is low, and the line-of-sight nature of the process involves specific restrictions. In this article, the deposition of TBCs by the LPPS-TF process is shown. How the evaporation of the feedstock powder could be improved and to what extent the deposition rates could be increased were investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.