Based on a combination of a system-oriented approach and a synergetic concept, the requirements for the design of tribological polymer composite materials with high-modulus fillers are formed. These materials are considered as an open dynamic system that evolves during operation. The principles of the synergetic concept for tribotechnical systems taking into account the theory of evolution and self-organization to ensure its self-governing and self-supporting development are considered. It is revealed that in the process of interaction of elements of the tribosystem the cooperation of local areas of their materials is formed with the emergence of a critical number of such areas and the creation of an information field about their functioning. The direction of self-organization of processes and states of parts materials in the tribotechnical system and expediency of using the conclusions of the synergetic concept in the construction of polymer composite materials, as well as their nonequilibrium are shown. The issues of creation of tribophysical bases of wear resistance of tribotechnical systems with conjugations of the details made or strengthened by polymeric composite materials are considered. Polymer composite materials are considered as a set of interacting ensembles of local areas, the principle of maximum wear resistance (reliability) is used. Tribological principles and requirements to creation and substantiation of expediency and efficiency of use of high-modulus fillers in polymers are formulated
The course of friction and wear processes in the surface layers of conjugations of machine parts is clarified on the basis of the idea of dilaton and compression bonds of atoms in the materials of parts. Dilaton-compression connections are random in nature, and therefore in this work the theory of destruction of parts by S.M. Zhurkov, thermodynamic and quantum physical approaches. The entropy at the macro-, meso- and microscopic levels and the local regions of the materials of conjugation of the parts subject to friction loading are considered. In the diagram of the state of atomic-molecular bonds the dependence curve Fi(ri) or Ti(ri) is considered and the analysis of transformations of bonds according to the specified diagram is carried out. From the point of view of solid state physics and tribophysics, the manifestation, evolution and consequences of the influence on the characteristics and properties of the friction zone of dilaton and compression bonds of material atoms are considered. Composite materials (composite coatings) are substantiated in more detail. This takes into account the assessment of the concept of material stresses in the friction zone, the ability to relax it, as well as the presence of the SD effect. The fracture process is associated with the modulus of elasticity of the components of the composite material and the bulk content of the filler. An appropriate condition is proposed, which determines the tribological efficiency of composite materials and coatings.
The bases for creation of theoretical bases of tribotechnologies of running-in and restoration of conjugations of details of systems and units of motor transport and mobile agricultural machinery are defined. The specifics of selective transfer on the surface of contacting parts of machines and creation of servito films, formation of coatings during running-in and restoration from antifriction materials, which are a part of additives in motor and transmission oil, are considered. A number of tribophysicochemical processes that occur in the conjugations of parts materials and how they affect the creation of tribotechnologies of running-in and restoration are clarified. The creation of tribotechnologies using geomodifiers is considered. It is proposed to build a single theory of tribotechnologies of running-in and recovery on the basis of the mechanism of triboplasm formation in the conjugations of parts of systems and units of machines. It is also proposed to add to this the thermofluctuation theory of S.M. Zhurkova taking into account the change of dilaton and compression bonds of atoms of materials of tribocouples of details with creation of local areas of deformations of compression and tension and zones of thermoplastic deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.