Abstract. The article is devoted to the issues of reducing the negative impact on the environment of the production of soda ash, which is achieved by reducing the formation of gas and dust emissions, as well as their deeper cleaning. The problem of cleaning gas emissions from the production of soda ash is solved by using hollow vortex devices, their comparison with operating apparatus is given. The advantages of multi-stage vortex-type apparatuses for cleaning large volumes of industrial gas emissions are noted. The article states that the task of cleaning of industrial gas emissions is significantly complicated by their large volumes, which makes it difficult to use traditional treatment equipment. Most of the devices currently used to clean gases from gaseous, liquid and solid impurities are characterized by low throughput due to small maximum permissible gas velocities in the apparatus.The necessity of using multistage vortex devices for cleaning gas emissions from ammonia and soda dust is substantiated. The advantages of the apparatus of this group are noted -low hydraulic resistance, high efficiency and low energy and metal capacity. The comparison of vortex devices with other active gas cleaning devices according to fractional efficiency is given. The scheme of purification of gas emissions from soda dust, with its further utilization, is proposed. The efficiency of submicron particle deposition in a vortex apparatus with intensive phase interaction may exceed 95 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.