The absence of simple examples of superconductivity adjoining itinerant-electron ferromagnetism in the phase diagram has for many years cast doubt on the validity of conventional models of magnetically mediated superconductivity. On closer examination, however, very few systems have been studied in the extreme conditions of purity, proximity to the ferromagnetic state and very low temperatures required to test the theory definitively. Here we report the observation of superconductivity on the border of ferromagnetism in a pure system, UGe2, which is known to be qualitatively similar to the classic d-electron ferromagnets. The superconductivity that we observe below 1 K, in a limited pressure range on the border of ferromagnetism, seems to arise from the same electrons that produce band magnetism. In this case, superconductivity is most naturally understood in terms of magnetic as opposed to lattice interactions, and by a spin-triplet rather than the spin-singlet pairing normally associated with nearly antiferromagnetic metals.
The discovery of superconductivity at high pressure (albeit over a restricted range) in the ferromagnetic material UGe2 raised the possibility that bulk superconductivity might be found in other ferromagnets. The exact symmetry of the paired state and the dominant mechanism responsible for the pairing, however, remain unidentified. Meanwhile, the conjecture that superconductivity could occur more generally in ferromagnets has been fuelled by the recent observation of a low-temperature transition that suggests an onset of superconductivity in high-quality crystals of the itinerant-ferromagnet ZrZn2 (ref. 2), although the thermodynamic signature of this transition could not be detected. Here we show that the ferromagnet URhGe is superconducting at ambient pressure. In this case, we find the thermodynamic signature of the transition-its form is consistent with a superconducting pairing of a spin-triplet type, although further testing with cleaner samples is needed to confirm this. The combination of superconductivity and ferromagnetism may thus be more common and consequently more important than hitherto realized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.