This work presents a boundary element method formulation for the analysis of scalar wave propagation problems. The formulation presented here employs the so-called operational quadrature method, by means of which the convolution integral, presented in time-domain BEM formulations, is substituted by a quadrature formula, whose weights are computed by using the Laplace transform of the fundamental solution and a linear multistep method. Two examples are presented at the end of the article with the aim of validating the formulation.
SUMMARYThis work presents a two-dimensional boundary element method (BEM) formulation for the analysis of scalar wave propagation problems. The formulation is based on the so-called convolution quadrature method (CQM) by means of which the convolution integral, presented in time-domain BEM formulations, is numerically substituted by a quadrature formula, whose weights are computed using the Laplace transform of the fundamental solution and a linear multistep method. This BEM formulation was initially developed for scalar wave propagation problems with null initial conditions. In order to overcome this limitation, this work presents a general procedure that enables one to take into account non-homogeneous initial conditions, after replacing the initial conditions by equivalent pseudo-forces. The numerical results included in this work show the accuracy of the proposed BEM formulation and its applicability to such kind of analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.