The high brittle nature of pavement structures have been carefully examined based on compressive, tensile strain and the harsh effects of fatigue cycle with reference to the base layer thicknesses and elastic strains during and after construction were examined. Subjection of asphalt and concrete-cement pavements to traffic loading and tyre pressure also influences the vertical stress and strain values for the asphalt and concrete materials under the same axial loading conditions. Using various fundamental equations under linear elastic conditions for the analysis of Asphalt and Concrete Cement structure revealed that both materials do respond differently to compressive and tensile stresses under similar mechanical conditions. Effect of compressive stresses and strains on concrete pavement is larger compare to asphalt pavement due to large thickness sub-base layer of its pavement structure. Both pavement layer thicknesses are independent of fatigue cycle under harsh traffic loading. Thus, concrete pavement has shown better fatigue resistance and less tensile strain values than asphalt pavements due to high pavement layer thickness regardless of the load distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.