An experimental investigation was conducted to investigate the influence of abrasive waterjet parameters on the volume removal rate in abrasive waterjet turning. Abrasive mass flow rate, abrasive particle size, waterjet pressure, and orifice diameter were the principal variables that were investigated. Limited tests were also conducted with abrasive mixtures. The results show that the volume removal trends in abrasive waterjet turning are similar to those in linear cutting with abrasive waterjets. Increasing waterjet pressure, orifice diameter, and abrasive flow rate generally resulted in an increase in volume removal rate. However, the volume removal rate levels off either due to volume sweep rate limit or due to the abrasive waterjet limit. The results also suggest a potential for optimizing the abrasive flow rate and abrasive composition. The volume removal rate showed only a weak dependence on the abrasive particle size.
Distribution of thermal energy in the workpiece during cutting with an abrasive waterjet (AWJ) was studied experimentally. Detailed time-temperature measurements in the workpiece as a function of jet pressure, traverse rate, workpiece material, and workpiece orientation were performed. It is shown that maximum temperatures occur at the immediate vicinity of the cutting interface and sharply decay thereafter with increasing distance from the interface. A higher jet pressure and/or a lower traverse speed results in higher temperatures in the workpiece. A material with higher thermal conductivity experiences higher temperatures during the cut. Within the workpiece, higher temperatures occur at inner zones where the jet-induced cooling effects are minimum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.