The paper presents the detailed theoretical description of the intermediate state polarization and photofragment angular distribution in resonance enhanced multiphoton ionization (REMPI) of molecules and the experimental investigation of these effects in the E(1)Sigma(+) and V(1)Sigma(+) states of HCl populated by two-photon transitions. It is shown that the intermediate state polarization can be characterized by the universal parameter b which is in general a complex number containing information about the symmetry of the two-photon excitation and possible phase shifts. The photofragment angular distribution produced by one- or multiphoton excitation of the polarized intermediate state is presented as a product of the intermediate state axis spatial distribution and the angular distribution of the photofragments from an unpolarized intermediate state. Experiments have been carried out by two complementary methods: REMPI absorption spectroscopy of rotationally resolved (E,v'=0<--X,v"=0) and (V,v'=12<--X,v"=0) transitions and REMPI via the Q(0) and Q(1) rotational transitions followed by three-dimensional ion imaging detection. The values of the parameter b determined from experiment manifest the mostly perpendicular nature of the initial two-photon transition. The experimentally obtained H(+) -ion fragment angular distributions produced via the Q(1) rotational transition show good agreement with theoretical prediction.
New theoretical and experimental results for the ultraviolet photodissociation dynamics of thionyl chloride (SOCl2) are presented and combined with existing data from a variety of sources in order to provide a unified view of the photodissociation dynamics of SOC12. Time-dependent density functional theory on the basis of the hybrid-type B3LYP functional was employed to calculate vertical excitation energies for the SOCl2 parent molecule up to 6.3 eV. Three-dimensional (3D) imaging of photofragments was performed for a dissociation wavelength of 235 nm. Atomic chlorine fragments were observed in the 2P(3/2) ground state [Cl] and the 2P(1/2) excited spin-orbit state [Cl*] by employing resonance enhanced multi-photon ionization (REMPI) and time-of-flight (TOF) techniques. State-specific speed distributions and the speed dependence of the beta anisotropy parameter were obtained from the full 3D momentum vector distribution by appropriate projection methods. Bimodal speed distributions for both spin-orbit states are evidence of a competition between the radical (SOCl2 --> SOCl + Cl/Cl*) and the three-body decay channel (SOCl2 --> SO + 2 Cl/Cl*). No evidence of the molecular fragmentation channel (SOCl2 --> SO + Cl2) was found. With increasing fragment speed the beta anisotropy parameter increases from 0.1 to 0.85 and 0.68 for Cl and Cl*, respectively, suggesting fragmentation via an excited A' state for slow fragments and via an A" state for fast fragments. The calculations allow for the first time to interpret all previous and new experimental data for the ultraviolet photodissociation of SOCl2 by assuming simultaneous excitation of several excited electronic states giving rise to competing dissociation channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.