Most people with diabetes suffer some deterioration of the feet. Diabetic foot syndrome causes ulceration in about 15% of cases and such deterioration leads to amputation in about 2.5% of diabetic patients, diminishing their quality of life and generating extraordinary costs for patients and public health systems. Currently, there is no objective method for the detection of diabetic foot syndrome in its early stages. We propose terahertz imaging as a method for the evaluation of such deterioration. This screening method could aid the prevention and medical treatment of this condition in the future.
Terahertz (THz) technology has experienced rapid development in the past two decades. Growing numbers of interdisciplinary applications are emerging, including materials science, physics, communications, and security as well as biomedicine. THz biophotonics involves studies applying THz photonic technology in biomedicine, which has attracted attention due to the unique features of THz waves, such as the high sensitivity to water, resonance with biomolecules, favorable spatial resolution, capacity to probe the water–biomolecule interactions, and nonionizing photon energy. Despite the great potential, THz biophotonics is still at an early stage of development. There is a lack of standards for instrumentation, measurement protocols, and data analysis, which makes it difficult to make comparisons among all the work published. In this article, we give a comprehensive review of the key findings that have underpinned research into biomedical applications of THz technology. In particular, we will focus on the advances made in general THz instrumentation and specific THz-based instruments for biomedical applications. We will also discuss the theories describing the interaction between THz light and biomedical samples. We aim to provide an overview of both basic biomedical research as well as pre-clinical and clinical applications under investigation. The paper aims to provide a clear picture of the achievements, challenges, and future perspectives of THz biophotonics.
This work presents an experimental setup to control the way in which pressure interferes with the repeatability of in vivo THz skin measurements. By integrating a pressure sensor circuit into our THz system, it is possible to identify which measurements were taken within a previously specified pressure range. The live response of the pressure sensor helps to acquire data within the desired pressure leading to greater consistency of data between measurements. Additionally, a protocol is proposed to help achieve repeatable results and to remove the effects of the natural variation of the skin through the course of the day. This technique has been shown to be able to quantify the changes induced in the skin following the application of a moisturising skin product and shows the measured result to be significantly different from natural skin variation. This research therefore prepares the way for further studies on the effectiveness of different skin products using in vivo THz measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.