With the high-temperature superconductors a qualitatively new regime in the phenomenology of type-II superconductivity can be accessed. The key elements governing the statistical mechanics and the dynamics of the vortex system are (dynamic) thermal and quantum fluctuations and (static) quenched disorder. The importance of these three sources of disorder can be quantified by the Ginzburg number Gi =(T, /H, sg ) /2, the quantum resistance Qu =(e /A'i(p"/ski, and the critical current-density ratio j,/jo, with j, and jo denoting the depinning and depairing current densities, respectively (p" is the normal-state resistivity and E = m /M (1 denotes the anisotropy parameter). The material parameters of the oxides conspire to produce a large Ginzburg number Gi -10 and a large quantum resistance Qu -10 ', values which are by orders of magnitude larger than in conventional superconductors, leading to interesting effects such as the melting of the vortex lattice, the creation of new vortex-liquid phases, and the appearance of macroscopic quantum phenomena. Introducing quenched disorder into the system turns the Abrikosov lattice into a vortex glass, whereas the vortex liquid remains a liquid. The terms "glass" and "liquid" are defined in a dynamic sense, with a sublinear response p=BE/Bji c characterizing the truly superconducting vortex glass and a finite resistivity p( j~0))0 being the signature of the liquid phase. The smallness of j,/jo allows one to discuss the influence of quenched disorder in terms of the weak collective pinning theory. Supplementing the traditional theory of weak collective pinning to take into account thermal and quantum fluctuations, as well as the new scaling concepts for elastic media subject to a random potential, this modern version of the weak collective pinning theory consistently accounts for a large number of novel phenomena, such as the broad resistive transition, thermally assisted flux flow, giant and quantum creep, and the glassiness of the solid state. The strong layering of the oxides introduces additional new features into the thermodynamic phase diagram, such as a layer decoupling transition, and modifies the mechanism of pinning and creep in various ways. The presence of strong (correlated) disorder in the form of twin boundaries or columnar defects not only is technologically relevant but also provides the framework for the physical realization of novel thermodynamic phases such as the Bose glass. On a macroscopic scale the vortex system exhibits self-organized criticality, with both the spatial and the temporal scale accessible to experimental investigations.
Large and randomly arranged pinning centers cause a strong deformation of a flux line lattice, so that each pinning center acts on the lattice with a maximum force. The average force for such single-particle pinning can be inferred from a simple summing procedure and has a domelike dependence on magnetic field. Pinning centers of average ]orce, such as clusters of dislocations, strongly deform the flux line lattice only in weak fields and in fields close to the critical field, where there is a peak in the dependence of the critical current on magnetic field. In the range of intermediate fields there is a weak collective pinning. A large concentration of weak centers leads to collective pinning in all fields. In this case, near the critical field a critical current peak should be observed. To explain this peak and to define the boundaries between the regions of collective and single-particle pinning the possible break -off of the flux line lattice from the lines of magnetic force should be taken into consideration, which leads to extra softening of the lattice. 409
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.