In finite-dimensional Euclidean space, we analyze the problem of pursuit of a single evader by a group of pursuers, which is described by a system of differential equations with Caputo fractional derivatives of order \(alpha.\) The goal of the group of pursuers is the capture of the evader by at least \(m\) different pursuers (the instants of capture may or may not coincide). As a mathematical basis, we use matrix resolving functions that are generalizations of scalar resolving functions. We obtain sufficient conditions for multiple capture of a single evader in the class of quasi-strategies. We give examples illustrating the results obtained.
In the finite-dimensional Euclidean space, a task of pursuing two evaders by a group of pursuers is considered, described by a system of the form D(α)zij=azij+ui−v, where D(α)f is the Caputo fractional derivative of order α∈(0,1) of the function f, and a is a real number. It is assumed that all evaders use the same control and that the evaders do not leave a convex cone with vertex at the origin. The aim of the group of pursuers is to capture two evaders. The pursuers use program counterstrategies based on information about the initial positions and the control history of the evaders. The set of admissible controls is a unit ball centered at zero, the target sets are the origins. In terms of initial positions and game parameters, sufficient conditions for the capture are obtained. Using the method of resolving functions as a basic research tool, we derive sufficient conditions for the solvability of the approach problem in some guaranteed time
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.