The transport of hydrated ions through narrow pores is important for a number of processes such as the desalination and filtration of water and the conductance of ions through biological channels. Here, molecular dynamics simulations are used to systematically examine the transport of anionic drinking water contaminants (fluoride, chloride, nitrate, and nitrite) through pores ranging in effective radius from 2.8 to 6.5 Å to elucidate the role of hydration in excluding these species during nanofiltration. Bulk hydration properties (hydrated size and coordination number) are determined for comparison with the situations inside the pores. Free energy profiles for ion transport through the pores show energy barriers depend on pore size, ion type, and membrane surface charge and that the selectivity sequence can change depending on the pore size. Ion coordination numbers along the trajectory showed that partial dehydration of the transported ion is the main contribution to the energy barriers. Ion transport is greatly hindered when the effective pore radius is smaller than the hydrated radius, as the ion has to lose some associated water molecules to enter the pore. Small energy barriers are still observed when pore sizes are larger than the hydrated radius due to re-orientation of the hydration shell or the loss of more distant water. These results demonstrate the importance of ion dehydration in transport through narrow pores, which increases the current level of mechanistic understanding of membrane-based desalination and transport in biological channels.
Many countries' water resources are limited in both quantity and quality. While engineering solutions can now safely produce recycled and desalinated water from non-potable sources at a relatively low cost, the general public is sceptical about adopting these alternative water sources. Social scientists need to better understand what is causing this lack of acceptance by the general population and how acceptance levels for recycled and desalinated water can be increased. This study is the first to conduct a comparative analysis of knowledge, perceptions, acceptability, and determine segments of residents who are more open-minded than the general population toward the use of recycled and desalinated water. The Australian population once perceived desalinated water as environmentally unfriendly, and recycled water as a public health hazard. The general level of knowledge about these two concepts as potential water sources has historically been low. After nearly five years of serious drought, accompanied by severe water restrictions across most of the country, and subsequent media attention on solutions to water scarcity, Australians now show more acceptance of desalinated water for close-to-body uses, and less resistance to recycled water for garden watering and cleaning uses. The types of people likely to be strong accepters of the two alternative water sources are distinctly different groups, and can be reached through different media mixes. This finding has significant implications for policy makers.
The ability of a variety of nanofiltration and reverse osmosis membranes to retain the natural hormone estrone are examined here as a function of solution conditions. While size exclusion dominates retention with the tighter membranes, both size exclusion and adsorptive effects appear to be instrumental in maintaining high retention on nanofiltration membranes that otherwise exhibit relatively low ion retentions. These adsorptive effects may be driven by hydrogen bonding between estrone and the membrane. Electrostatic attraction appears to aid retention with an apparent slight decrease in retention at high NaCl concentrations. Deprotonation of estrone leads to a significant decrease in retention, most likely as a result of the effect of strong electrostatic repulsive forces decreasing the proximity of the negatively charged estrone to the negatively charged membrane surface and thus lowering the potential for adsorptive retention. This deprotonation effect is absent for tight RO membranes. The results reported here indicate that while open nanofiltration membranes may be effective in retaining estrone under some conditions, the extent of retention may be very susceptible to maintenance of adsorptive capacity at the membrane surface and depend on solution chemistry.
Organic micropollutants such as estrogens occur in water in increasing quantities from predominantly anthropogenic sources. In water such micropollutants partition not only to surfaces such as membrane polymers but also to any other natural or treatment related surfaces. Such interactions are often observed as sorption in treatment processes and this phenomenon is exploited in activated carbon filtration, for example. Sorption is important for polymeric materials and this is used for the concentration of such micropollutants for analytical purposes in solid phase extraction. In membrane filtration the mechanism of micropollutant sorption is a relatively new discovery that was facilitated through new analytical techniques. This sorption plays an important role in micropollutant retention by membranes although mechanisms of interaction are to date not understood. This review is focused on sorption of estrogens on polymeric surfaces, specifically membrane polymers. Such sorption has been observed to a large extent with values of up to 1.2 ng/cm(2) measured. Sorption is dependent on the type of polymer, micropollutant characteristics, solution chemistry, membrane operating conditions as well as membrane morphology. Likely contributors to sorption are the surface roughness as well as the microporosity of such polymers. While retention-and/or reflection coefficient as well as solute to effective pore size ratio-controls the access of such micropollutants to the inner surface, pore size, porosity and thickness as well as morphology or shape of inner voids determines the available area for sorption. The interaction mechanisms are governed, most likely, by hydrophobic as well as solvation effects and interplay of molecular and supramolecular interactions such as hydrogen bonding, π-cation/anion interactions, π-π stacking, ion-dipole and dipole-dipole interactions, the extent of which is naturally dependent on micropollutant and polymer characteristics. Systematic investigations are required to identify and quantify both relative contributions and strength of such interactions and develop suitable surface characterisation tools. This is a difficult endeavour given the complexity of systems, the possibility of several interactions taking place simultaneously and the generally weaker forces involved.
The presence of calcium and humic substances or natural organic matter (NOM) in surface waters can cause severe fouling of nanofiltration (NF) membranes. Conditions of fouling were studied using a stainless steel stirred cell of volume 185 mL and a membrane area of 21.2*10 -4 m 2 at a transmembrane pressure of 5 bar. Deposition of organic matter was determined by mass balance in feed and concentrate samples. Electron microscopy and X-ray photoelectron spectroscopy (XPS) were used to study the morphology and composition of the fouling layer. During permeate recycle experiments, which were used for fouling studies, it was found that calcium concentration (as a representative of multivalent ions) and the type of organic play a major role in fouling. The calcium forms complexes with some of the organics and deposits on the membrane surface. Depending on the solution conditions the organic or calcite (on which organics adsorb) precipitate. Factors, which influence the concentration of organics and ions at the membrane surface such as stirring, flux and transmembrane pressure, influenced the deposition of organic matter significantly. Irreversible fouling occurred with all membranes at high calcium concentrations, although the cellulose acetate membrane showed an overall better performance, possibly due to its low salt rejection and smooth surface. IHSS humic acid is the organic which deposits most easily and comparison of UV absorbance and DOC data showed that the fraction which absorbs UV strongest, and is more hydrophobic, deposits preferentially on the membranes. These substances also have the lowest solubility stressing the importance of concentration polarisation effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.