Public health and safety concerns have traditionally been the main reasons for resisting waste water reuse for fish farming. Potential adverse health effects in such applications could be avoided if the waste is sufficiently treated before reuse. In a full scale demonstration study in Suez, Egypt, about 400 m3/d of raw sewage were treated using a multi-compartment stabilization pond system, for a total residence time from 21-26 days. The treated effluent conformed to WHO guidelines and was used for rearing two types of local fish (tilapia and gray mullet). The produced fish were subjected to an extensive monitoring program. Bacteriological examination revealed that in all samples the fish muscles were free of bacterial contaminants. Nevertheless, low levels of Escherichia coli andAeromonas hydrophila, were isolated from the surface of the fish. Salmonellae, shigellae and staphylococcus aureus were absent from the surface of all the fish sampled. In addition, toxic metals (Pb, Cu, Zn, and Cd) were found to be at much lower levels than the international advisory limits for human consumption. It is concluded that fish reared in the treated effluent at Suez Experimental Station is (a) suitable for marketing for human consumption, and (b) it's quality is equal or better than fresh water fish in Egypt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.