The presented work is devoted to the experimental study of heat dissipation process caused by fatigue crack propagation. To investigate a spatial and time temperature evolution at the crack tip, set of experiments has been carried out using plate titanium specimens with pre-grown centred fatigue crack. An original mathematical algorithm for experimental data treatment has been developed to obtain the power of heat dissipation caused by plastic deformation at the crack tip. The algorithm includes spatial-time filtration and relative motion compensation procedures. The time dependence of the stored energy was calculated as the difference between work caused by plastic deformation near the crack tip and heat dissipation energy obtained from experimental data. As a result, it has been shown that the stored energy has to accumulated during the fatigue test and has to be equal to zero when the crack reaches the critical length corresponding to the failure of sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.