Abstract-The problem of scattering from sea surface covered by oil films is investigated by using a composite random rough surface model. A model is developed which extends the range of validity beyond the small perturbation theory. A general expression for the scattering cross section is obtained taking into account a modulation of the rough surface by long surface waves. A numerical study for the radar scattering cross section is provided in order to investigate the influence of the different ranges of the rough surface spectrum on the backscattering depression. For the case of backscattering, the contrast of radar signals scattered from a slick-free and a slick-covered surface is evaluated. The study is also carried through for two-frequency probing. A possibility to explain the mechanism of the depression of backscattering is discussed. The results of this study demonstrate the importance of the improved model which takes into account the entire spectrum of the sea surface roughness for the description of scattering from an ocean surface with and without oil slicks.
A problem of scattering from some buried inclusions under a rough boundary is considered. A correlation imaging method is applied. It has been shown that it is possible to exclude rough surface scattering from an image of targets group.
In this paper, the problem of scattering from sea surface with and without oil slicks is investigated taking the finite size of the illuminated area into account. A model of an inhomogeneous random rough surface with finite size of the scattering area is considered. To apply the results for a broad range of the random surface spectrum, an approach is developed which extends the range of validity beyond that of small perturbation theory. The general expression obtained for the scattering cross section takes into account a modulation of the rough surface by long surface waves. Analytical and numerical studies of the scattering cross section are provided to investigate the role of different mechanisms of scattering from various parts of the surface spectrum, and of diffraction caused by the finite size of the area. It is shown that the area size may affect the normalized scattering cross section in the case of the surface with a slick. Possibilities to explain the features of the suppression of the backscattering by oil slicks
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.