Recombinant blood clotting factor VIII is one of the most complex proteins for industrial manufacturing due to the low efficiency of its gene transcription, massive intracellular loss of its proprotein during post-translational processing, and the instability of the secreted protein. Improvement in hemophilia A therapy requires a steady increase in the production of factor VIII drugs despite tightening standards of product quality and viral safety. More efficient systems for heterologous expression of factor VIII can be created on the basis of the discovered properties of its gene transcription, post-translational processing, and behavior in the bloodstream. The present review describes the deletion variants of factor VIII protein with increased secretion efficiency and the prospects for the pharmaceutical development of longer acting variants and derivatives of factor VIII.
Mankind is at risk for accidental exposure to ionizing radiation. The experience in evaluating and treating victims of radiation exposure is briefly reviewed based upon accidents occurring over the past 25 years. Individual cases of acute toxicities to the skin, gastrointestinal tract, liver and bone marrow are presented. Biodosimetry (utilizing chromosome analysis of peripheral blood lymphocytes and bone marrow and electron spin resonance spectrometry of dental enamel) has been utilized in radiation accidents to assess individual dose. Variability in the dose of ionizing radiation received is typical among the population affected by the Chernobyl accident. Whereas the acute radiation syndrome resulting in a high mortality has been well-documented, little information is available regarding the effects of chronic, low-level exposure from the Chernobyl accident.
Prophylaxis and treatment of inherited clotting disorder hemophilia A requires regular administration of factor VIII. Recombinant factor VIII, which is produced in CHO or BHK cells, is equivalent to the plasma-derived one and is prevalent in current clinical practice in developed countries. Development of a biosimilar recombinant FVIII requires the creation of a highly productive clonal cell line and generation of monoclonal antibodies suitable for affinity purification of the product. Methotrexate-driven transgene amplification of genetic cassettes that code full-length and truncated variants of FVIII under the control of the CMV promoter was studied. It was shown that the expression level of the truncated variant of FVIII is 6.5 times higher than that of the full-length molecule. The transgene amplification procedure was sufficient for a twofold increase of the expression level in the transfected cells pool and subsequent selection of the clonal line, stably producing truncated FVIII at the level of 0.52 IU/ml during cultivation in a chemically defined protein-free culture medium. Four generated mouse monoclonal antibodies toward the heavy chain of FVIII were found suitable for binding the truncated variant of FVIII directly from the conditioned medium and elution of the FVIII with a more than 85% yield and normal pro-coagulant activity. The producer cell line and monoclonal antibodies obtained are sufficient for the development of upstream and downstream processes of biosimilar FVIII production. Generation of more productive cell lines by the use of stronger, nonviral promoters and shorter cDNA of FVIII will be the subject of further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.