In conclusion, immunotherapy of DCs pulsed with tumor-derived gp96 against murine lung cancer is effective through immune response of CD8(+) cytotoxic T lymphocytes and NK cells.
The effect of tacrolimus (FK506) on down-regulation of IL-2 production by T cells is considered to be mainly responsible for its strong suppression of immunological events. In this study, we show that FK506 also has an affect on antigen presentation by antigenpresenting cells in vitro. FK506 was able to inhibit the presentation of endogenous MHC class II-restricted minor histocompatibility antigens in primary dendritic cells (DC) in vitro, but cyclosporine A (CsA) and rapamycin (RAP) were not. RNA interference (RNAi)-mediated reduction of endogenous FK506-binding protein (FKBP)51 expression resulted in a marked decrease in antigen presentation, suggesting that FKBP51 plays a role in endogenous MHC class II-restricted antigen presentation. Since our model used naturally expressed cytosolic antigens in primary DC, these effects might have been due to novel properties of the immunosuppressive drugs and may allow us to elucidate a new paradigm for the immunosuppressive mechanism of FK506.
A channel layer substitution of a wider bandgap AlGaN for a conventional GaN in high electron mobility transistors (HEMTs) is an effective method of enhancing the breakdown voltage. Wider bandgap AlGaN, however, should also increase the ohmic contact resistance. Si ion implantation doping technique was utilized to achieve sufficiently low resistive source/drain contacts. The fabricated AlGaN channel HEMTs with the field plate structure demonstrated good pinch-off operation with sufficiently high drain current density of 0.5 A/mm without noticeable current collapse. The obtained maximum breakdown voltages was 1700 V in the AlGaN channel HEMT with the gate-drain distance of 10 μm. These remarkable results indicate that AlGaN channel HEMTs could become future strong candidates for not only high-frequency devices such as low noise amplifiers but also high-power devices such as switching applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.