This research focuses on the comparative analysis of the PWR fuel assembly based on VERA depletion benchmark problems using community-developed open source Monte Carlo code OpenMC, python based burnup code system ONIX (a coupling interface for Monte Carlo code OpenMC), and deterministic DRAGON code. The depletion analysis was performed using OpenMC and ONIX with ENDF/B-VII.1 nuclear data library, and DRAGON with SHEM-361 based DRAGLIB format library (ENDF/B-VII.1). The code-to-code analysis on the evolution of , atom number density, and power distribution as a function of burnup has been performed and the result shows a good agreement with the maximum difference within 200 pcm at EOC. However small discrepancy around 90 pcm has been observed in calculated by DRAGON compared to OpenMC in the presence of integral fuel burnable absorbers (IFBA). The above-mentioned codes have been validated successfully for the first time against PWR fuel assembly based on VERA depletion benchmark problems. It can be concluded that initial implementation of these codes at the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.