Speech enhancement algorithms which are based on estimating the short-time spectral amplitude of the clean speech have better performance when a soft-decision gain modification, depending on the a priori probability of speech absence, is used. In reported works a fixed probability, q, is assumed. Since speech is non-stationary and may not be present in every frequency bin when voiced, we propose a method for estimating distinct values of q for different bins which are tracked in time. The estimation is based on a decision-theoretic approach for setting a threshold in each bin followed by short-time averaging. The estimated q's are used to control both the gain and the update of the estimated noise spectrum during speech presence in a modified MMSE log-spectral amplitude estimator. Subjective tests resulted in higher scores than for the IS-127 standard enhancement algorithm, when pre-processing noisy speech for a coding application.
We describe a speech enhancement algorithm which leads to significant quality and intelligibility improvements when used as a preprocessor to a low bit rate speech coder. This algorithm was developed in conjunction with the mixed excitation linear prediction (MELP) coder which, by itself, is highly susceptible to environmental noise. The paper presents novel as well as known speech and noise estimation techniques and combines them into a highly effective speech enhancement system. The algorithm is based on short-time spectral amplitude estimation, soft-decision gain modification, tracking of the a priori probability of speech absence, and minimum statistics noise power estimation. Special emphasis is placed on enhancing the performance of the preprocessor in nonstationary noise environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.