Final published version including significant revisions. Twenty four pages, fourteen figures. Original version April 2006; final version published in MNRAS August 2007We describe the goals, design, implementation, and initial progress of the UKIRT Infrared Deep Sky Survey (UKIDSS), a seven year sky survey which began in May 2005, using the UKIRT Wide Field Camera. It is a portfolio of five survey components covering various combinations of the filter set ZYJHK and H_2. The Large Area Survey, the Galactic Clusters Survey, and the Galactic Plane Survey cover approximately 7000 square degrees to a depth of K~18; the Deep Extragalactic Survey covers 35 square degrees to K~21, and the Ultra Deep Survey covers 0.77 square degrees to K~23. Summed together UKIDSS is 12 times larger in effective volume than the 2MASS survey. The prime aim of UKIDSS is to provide a long term astronomical legacy database; the design is however driven by a series of specific goals -- for example to find the nearest and faintest sub-stellar objects; to discover Population II brown dwarfs, if they exist; to determine the substellar mass function; to break the z=7 quasar barrier; to determine the epoch of re-ionisation; to measure the growth of structure from z=3 to the present day; to determine the epoch of spheroid formation; and to map the Milky Way through the dust, to several kpc. The survey data are being uniformly processed, and released in stages through the WFCAM Science Archive (WSA : http://surveys.roe.ac.uk/wsa). Before the formal survey began, UKIRT and the UKIDSS consortium collaborated in obtaining and analysing a series of small science verification (SV) projects to complete the commissioning of the camera. We show some results from these SV projects in order to demonstrate the likely power of the eventual complete survey. Finally, using the data from the First Data Release we assess how well UKIDSS is meeting its design targets so far
The intergalactic medium was not completely reionized until approximately a billion years after the Big Bang, as revealed by observations of quasars with redshifts of less than 6.5. It has been difficult to probe to higher redshifts, however, because quasars have historically been identified in optical surveys, which are insensitive to sources at redshifts exceeding 6.5. Here we report observations of a quasar (ULAS J112001.48+064124.3) at a redshift of 7.085, which is 0.77 billion years after the Big Bang. ULAS J1120+0641 has a luminosity of 6.3 × 10(13)L(⊙) and hosts a black hole with a mass of 2 × 10(9)M(⊙) (where L(⊙) and M(⊙) are the luminosity and mass of the Sun). The measured radius of the ionized near zone around ULAS J1120+0641 is 1.9 megaparsecs, a factor of three smaller than is typical for quasars at redshifts between 6.0 and 6.4. The near-zone transmission profile is consistent with a Lyα damping wing, suggesting that the neutral fraction of the intergalactic medium in front of ULAS J1120+0641 exceeded 0.1.
Context. The infrared wide-field camera (WFCAM) is now in operation on the 3.8 m UK Infrared Telescope on Mauna Kea. WFCAM currently has the fastest survey speed of any infrared camera in the world, and combined with generous allocations of telescope time, will produce deep maps of the sky from Z to K band. The data from a set of public surveys, known as UKIDSS, will be initially available to astronomers in ESO member states, and later to the world. Aims. In order to maximise survey speed, the WFCAM field of view was required to be as large as possible while incorporating conventional infrared-instrument design features such as a cold re-imaged pupil stop and cryogenic optics and mechanisms. Methods. The solution adopted was to build a cryogenic Schmidt-type camera, mounted forward of the primary mirror, which illuminates a very large 0.9• diameter focal plane, containing four 2k × 2k HgCdTe Rockwell detectors. Results. Following several commissioning periods during which the camera, focal plane and telescope optical axes were successfully co-aligned, WFCAM now operates close to specifications, regularly achieving 0.7 FWHM images over the full field. Projects which already report excellent results include the detection of variability in young stellar clusters, as well as preliminary deep IR imaging of the Subaru and XMM-Newton deep field.
'The definitive version is available at www.blackwell-synergy.com .' Copyright Blackwell Publishing DOI: 10.1111/j.1365-2966.2008.13924.xThe UKIDSS Galactic Plane Survey (GPS) is one of the five near-infrared Public Legacy Surveys that are being undertaken by the UKIDSS consortium, using the Wide Field Camera on the United Kingdom Infrared Telescop
It is thought that the first generations of massive stars in the Universe were an important, and quite possibly dominant 1 , source of the ultra-violet radiation that reionized the hydrogen gas in the intergalactic medium (IGM); a state in which it has remained to the present day. Measurements of cosmic microwave background anisotropies suggest that this phase-change largely took place 2 in the redshift range z=10.8 ±1.4, while observations of quasars and Lyman-α galaxies have shown that the process was essentially completed 3,4,5 by z≈6. However, the detailed history of reionization, and characteristics of the stars and proto-galaxies that drove it, remain unknown. Further progress in understanding requires direct observations of the sources of ultra-violet radiation in the era of reionization, and mapping the evolution of the neutral hydrogen (H I) fraction through time. The detection of galaxies at such redshifts is highly challenging, due to their intrinsic faintness and high luminosity distance, whilst bright quasars appear to be rare It has long been recognised that GRBs have the potential to be powerful probes of the early universe. Known to be the end product of rare massive stars 11 , GRBs and their afterglows can briefly outshine any other source in the universe, and would be theoretically detectable to z ~ 20 and beyond 12,13 . Their association with individual stars means that they serve as a signpost of star formation, even if their host galaxies are too 5 faint to detect directly. Equally important, precise determination of the hydrogen Lyman-α absorption profile can provide a measure of the neutral fraction of the IGM at the location of the burst 9,10,14,15 . With multiple GRBs at z > 7, and hence lines of sight through the IGM, we could thus trace the process of reionization from its early stages.However, until now the highest redshift GRBs (at z = 6. Ground-based optical observations in the r, i and z filters starting within a few minutes of the burst revealed no counterpart at these wavelengths (see Supplementary Information (SI)).The United Kingdom Infrared Telescope (UKIRT) in Hawaii responded to an automated request, and began observations in the K-band 21 minutes post burst. These images ( Figure 1) revealed a point source at the reported X-ray position, which we concluded was likely to be the afterglow of the GRB. We also initiated further nearinfrared (NIR) observations using the Gemini-North 8-m telescope, which started 75 min after the burst, and showed that the counterpart was only visible in filters redder than about 1.2 µm. In this range the afterglow was relatively bright and exhibited a shallow spectral slope F ν ∝ ν -0.26 , in contrast to the deep limit on any flux in the Y filter (0.97-1.07 µm). Later observations from Chile using the MPI/ESO 2.2m telescope, Gemini South and the Very Large Telescope (VLT) confirmed this finding. The nondetection in the Y-band implies a power-law spectral slope between Y and J steeper than. This is impossible for dust at any redshift, and is a tex...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.