The haemoglobinopathies are the commonest single-gene disorders known, almost certainly because of the protection they provide against malaria, as attested by a number of observations. The geographical distributions of malaria and haemoglobinopathies largely overlap, and microepidemiological surveys confirm the close relationship between them. For two of the commonest disorders, haemoglobin S and alpha(+)-thalassaemia, there is also good clinical evidence for protection against malaria morbidity. However, not all the evidence appears to support this view. In some parts of the world malaria and haemoglobinopathies are not, and never have been, coexistent. It is also difficult to explain why the majority of haemoglobinopathies appear to be recent mutations and are regionally specific. Here we argue that these apparent inconsistencies in the malaria hypothesis are the result of processes such as genetic drift and migration and of demographic changes that have occurred during the past 10,000 years. When these factors are taken into account, selection by malaria remains the force responsible for the prevalence of the haemoglobinopathies.
The frequency of alpha+-thalassaemia, but not other unlinked DNA polymorphisms, exhibits an altitude- and latitude-dependent correlation with malaria endemicity throughout Melanesia, supporting the hypothesis that protection against this parasitic disease is the major factor responsible for the high frequencies of haemoglobinopathies in many parts of the world.
BackgroundThere is current expansion of newborn screening (NBS) programs to include lysosomal storage disorders because of the availability of treatments that produce an optimal clinical outcome when started early in life.ObjectiveTo evaluate the performance of a multiplex-tandem mass spectrometry (MS/MS) enzymatic activity assay of 6 lysosomal enzymes in a NBS laboratory for the identification of newborns at risk for developing Pompe, Mucopolysaccharidosis-I (MPS-I), Fabry, Gaucher, Niemann Pick-A/B, and Krabbe diseases.Methods and ResultsEnzyme activities (acid α-glucosidase (GAA), galactocerebrosidase (GALC), glucocerebrosidase (GBA), α-galactosidase A (GLA), α-iduronidase (IDUA) and sphingomyeline phosphodiesterase-1 (SMPD-1)) were measured on ~43,000 de-identified dried blood spot (DBS) punches, and screen positive samples were submitted for DNA sequencing to obtain genotype confirmation of disease risk. The 6-plex assay was efficiently performed in the Washington state NBS laboratory by a single laboratory technician at the bench using a single MS/MS instrument. The number of screen positive samples per 100,000 newborns were as follows: GAA (4.5), IDUA (13.6), GLA (18.2), SMPD1 (11.4), GBA (6.8), and GALC (25.0).DiscussionA 6-plex MS/MS assay for 6 lysosomal enzymes can be successfully performed in a NBS laboratory. The analytical ranges (enzyme-dependent assay response for the quality control HIGH sample divided by that for all enzyme-independent processes) for the 6-enzymes with the MS/MS is 5- to 15-fold higher than comparable fluorimetric assays using 4-methylumbelliferyl substrates. The rate of screen positive detection is consistently lower for the MS/MS assay compared to the fluorimetric assay using a digital microfluidics platform.
These results are different from the published results on which the NICE guidelines were based; however, the evidence base in children is small. There is currently insufficient evidence to support the use of ultrasound guidance for central venous catheterization in children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.