Titan's lower atmosphere has long been known to harbor organic aerosols (tholins) presumed to have been formed from simple molecules, such as methane and nitrogen (CH 4 and N 2 ). Up to now, it has been assumed that tholins were formed at altitudes of several hundred kilometers by processes as yet unobserved. Using measurements from a combination of mass/charge and energy/charge spectrometers on the Cassini spacecraft, we have obtained evidence for tholin formation at high altitudes (∼1000 kilometers) in Titan's atmosphere. The observed chemical mix strongly implies a series of chemical reactions and physical processes that lead from simple molecules (CH 4 and N 2 ) to larger, more complex molecules (80 to 350 daltons) to negatively charged massive molecules (∼8000 daltons), which we identify as tholins. That the process involves massive negatively charged molecules and aerosols is completely unexpected.
We investigate magnetic data showing the presence of field-aligned magnetosphere-ionosphere coupling currents on 31 Cassini passes across Saturn's southern postmidnight auroral region. The currents are strongly modulated in magnitude, form, and position by the phase of the southern planetary period oscillations (PPOs). PPO-independent currents are separated from PPO-related currents using the antisymmetry of the latter with respect to PPO phase. PPO-independent downward currents~1.1 MA per radian of azimuth flow over the polar open field region indicative of significant plasma subcorotation are enhanced in an outer plasma sheet layer of elevated ionospheric conductivity carrying~0.8 MA rad À1and close principally in an upward directed current sheet at~17°-19°ionospheric colatitude carrying 2.3 MA rad À1 that maps to the outer hot plasma region in Saturn's magnetosphere (equatorial rangẽ 11-16 Saturn radii (R S )) colocated with the UV oval. Subsidiary downward and upward currents~0.5 MA rad À1 lie at~19°-20.5°colatitude mapping to the inner hot plasma region, but no comparable currents are detected at larger colatitudes mapping to the cool plasma regime inside~8 R S . PPO-related currents at~17.5°-20°colatitude overlap the main upward and subsidiary downward currents and carry comparable rotating upward and downward currents peaking at~1.7 MA rad À1 . The overall current layer colatitude is also modulated with 1°amplitude in the PPO cycle, maximum equatorward adjacent to the peak upward PPO current and maximum poleward adjacent to peak downward PPO current. This phasing requires the current system to be driven from the planetary atmosphere rather than directly from the magnetosphere.
Titan's ionosphere contains a rich positive ion population including organic molecules. Here, using CAPS electron spectrometer data from sixteen Titan encounters, we reveal the existence of negative ions. These ions, with densities up to ∼100 cm−3, are in mass groups of 10–30, 30–50, 50–80, 80–110, 110–200 and 200+ amu/charge. During one low encounter, negative ions with mass per charge as high as 10,000 amu/q are seen. Due to their unexpectedly high densities at ∼950 km altitude, these negative ions must play a key role in the ion chemistry and they may be important in the formation of organic‐rich aerosols (tholins) eventually falling to the surface.
[1] We analyze the radial distribution of electron populations inside 20 R s in Saturn's magnetosphere, and we calculate moments for these populations by a forward modeling method using composite spectra produced by the CAPS/ELS (0.6 eV to 26 keV) and the MIMI/LEMMS (15 keV to 10 MeV) instruments on board Cassini. We first calculate and harmonize both data sets in physical units and apply corrections taking into account biases introduced by spacecraft interaction with the magnetospheric environment. We then test different bimodal isotropic electron distribution models, deciding on a model with two kappa distributions. We adjust our isotropic model to the flux composite spectra with a least square method to produce three sets of fluid parameters (density, temperature, spectral index) per electron population. The radial profiles are then analyzed, revealing a relevant boundary at 9 R s in both thermal and suprathermal electron populations. Observed discontinuities in the moment profiles (sudden drop-off in cold density profile outside 9 R s , hot electrons drop-off inside 9 R s ) coincide with the known outer edge of Saturn's neutral OH cloud. Farther out, thermal electrons disappear completely beyond 15 R s while suprathermal electrons are still observed in the middle and outer magnetosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.