The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field ( $B_0 = 12.2$ T), compact ( $R_0 = 1.85$ m, $a = 0.57$ m), superconducting, D-T tokamak with the goal of producing fusion gain $Q>2$ from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of $Q>2$ is achievable with conservative physics assumptions ( $H_{98,y2} = 0.7$ ) and, with the nominal assumption of $H_{98,y2} = 1$ , SPARC is projected to attain $Q \approx 11$ and $P_{\textrm {fusion}} \approx 140$ MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density ( $\langle n_{e} \rangle \approx 3 \times 10^{20}\ \textrm {m}^{-3}$ ), high temperature ( $\langle T_e \rangle \approx 7$ keV) and high power density ( $P_{\textrm {fusion}}/V_{\textrm {plasma}} \approx 7\ \textrm {MW}\,\textrm {m}^{-3}$ ) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
To better understand the role of cross-scale coupling in experimental conditions, a series of multi-scale gyrokinetic simulations were performed on Alcator C-Mod, L-mode plasmas. These simulations, performed using all experimental inputs and realistic ion to electron mass ratio ((mi/me)1∕2 = 60.0), simultaneously capture turbulence at the ion (kθρs∼O(1.0)) and electron-scales (kθρe∼O(1.0)). Direct comparison with experimental heat fluxes and electron profile stiffness indicates that Electron Temperature Gradient (ETG) streamers and strong cross-scale turbulence coupling likely exist in both of the experimental conditions studied. The coupling between ion and electron-scales exists in the form of energy cascades, modification of zonal flow dynamics, and the effective shearing of ETG turbulence by long wavelength, Ion Temperature Gradient (ITG) turbulence. The tightly coupled nature of ITG and ETG turbulence in these realistic plasma conditions is shown to have significant implications for the interpretation of experimental transport and fluctuations. Initial attempts are made to develop a “rule of thumb” based on linear physics, to help predict when cross-scale coupling plays an important role and to inform future modeling of experimental discharges. The details of the simulations, comparisons with experimental measurements, and implications for both modeling and experimental interpretation are discussed.
SPARC is designed to be a high-field, medium-size tokamak aimed at achieving net energy gain with ion cyclotron range-of-frequencies (ICRF) as its primary auxiliary heating mechanism. Empirical predictions with conservative physics indicate that SPARC baseline plasmas would reach $Q\approx 11$ , which is well above its mission objective of $Q>2$ . To build confidence that SPARC will be successful, physics-based integrated modelling has also been performed. The TRANSP code coupled with the theory-based trapped gyro-Landau fluid (TGLF) turbulence model and EPED predictions for pedestal stability find that $Q\approx 9$ is attainable in standard H-mode operation and confirms $Q > 2$ operation is feasible even with adverse assumptions. In this analysis, ion cyclotron waves are simulated with the full wave TORIC code and alpha heating is modelled with the Monte–Carlo fast ion NUBEAM module. Detailed analysis of expected turbulence regimes with linear and nonlinear CGYRO simulations is also presented, demonstrating that profile predictions with the TGLF reduced model are in reasonable agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.