Mercury's geological and internal evolution presents an interesting enigma: are there conditions that allow for both apparently limited radial contraction over the last 4 billion years and sufficiently rapid core cooling at present to permit a hydromagnetic dynamo? To address this question, we simulate the coupled thermal, magmatic, and tectonic evolution of Mercury for a range of parameters (e.g., mantle rheology, internal heat production, core sulfur content) in order to outline the set of assumptions most consistent with these two conditions. We find that among the models tested, the only ones strictly consistent with f 1-2 km of radial contraction since 4 Ga and a modern magnetic field generated by a core dynamo are those with a dry-olivine mantle rheology, heat production provided primarily by Th (negligible U or K), and a bulk core sulfur content >6.5 wt%. However, because of the limited coverage and resolution of Mariner 10 imaging and derived topography, the tectonic history of an entire hemisphere is unknown. The potential for other mechanisms (e.g., long-wavelength lithospheric folds) to accommodate contraction remains untested, limiting the ability to restrict models on the basis of accumulated strain. Furthermore, Mercury's magnetic field may be a consequence of a thermoelectric dynamo or even crustal remanence; neither hypothesis places strong constraints on current heat flux from the core. Spacecraft observations of Mercury are needed to elucidate further the internal structure and evolution of the planet.
Mars was most active during its first billion years. The core, mantle, and crust formed within â¼50 million years of solar system formation. A magnetic dynamo in a convecting fluid core magnetized the crust, and the global field shielded a more massive early atmosphere against solar wind stripping. The Tharsis province became a focus for volcanism, deformation, and outgassing of water and carbon dioxide in quantities possibly sufficient to induce episodes of climate warming. Surficial and near-surface water contributed to regionally extensive erosion, sediment transport, and chemical alteration. Deep hydrothermal circulation accelerated crustal cooling, preserved variations in crustal thickness, and modified patterns of crustal magnetization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.