We report on the results from the first six months of the Catalina Real-Time Transient Survey (CRTS). In order to search for optical transients (OTs) with timescales of minutes to years, the CRTS analyses data from the Catalina Sky Survey which repeatedly covers 26,000 of square degrees on the sky. The CRTS provides a public stream of transients that are bright enough to be followed up using small telescopes. Since the beginning of the survey, all CRTS transients have been made available to astronomers around the world in real time using HTML tables,RSS feeds, and VOEvents. As part of our public outreach program, the detections are now also available in Keyhole Markup Language through Google Sky. The initial discoveries include over 350 unique OTs rising more than 2 mag from past measurements. Sixty two of these are classified as supernovae (SNe), based on light curves, prior deep imaging and spectroscopic data. Seventy seven are due to cataclysmic variables (CVs; only 13 previously known), while an additional 100 transients were too infrequently sampled to distinguish between faint CVs and SNe. The remaining OTs include active galactic nucleus, blazars, high-proper-motions stars, highly variable stars (such as UV Ceti stars), and transients of an unknown nature. Our results suggest that there is a large population of SNe missed by many current SN surveys because of selection biases. These objects appear to be associated with faint host galaxies. We also discuss the unexpected discovery of white dwarf binary systems through dramatic eclipses.
We report on our search for microlensing towards the Large Magellanic Cloud (LMC). Analysis of 5.7 years of photometry on 11.9 million stars in the LMC reveals 13 -17 microlensing events. A detailed treatment of our detection efficiency shows that this is significantly more than the ∼ 2 to 4 events expected from lensing by known stellar populations. The timescales ( t ) of the events range from 34 to 230 days. We estimate the microlensing optical depth towards the LMC from events with 2 < t < 400 days to be τ 400 2 = 1.2 +0.4 −0.3 × 10 −7 , with an additional 20% to 30% of systematic error. The spatial distribution of events is mildly inconsistent with LMC/LMC disk self-lensing, but is consistent with an extended lens distribution such as a Milky Way or LMC halo. Interpreted in the context of a Galactic dark matter halo, consisting partially of compact objects, a maximum likelihood analysis gives a MACHO halo fraction of 20% for a typical halo model with a 95% confidence interval of 8% to 50%. A 100% MACHO halo is ruled out at the 95% C.L. for all except our most extreme halo model. Interpreted as a Galactic halo population, the most likely MACHO mass is between 0.15 M ⊙ and 0.9 M ⊙ , depending on the halo model, and the total mass in MACHOs out to 50 kpc is found to be 9 +4 −3 × 10 10 M ⊙ , independent of the halo model. These results are marginally consistent with our previous results, but are lower by about a factor of two. This is mostly due to Poisson noise because with 3.4 times more exposure and increased sensitivity to long timescale events, we did not find the expected factor of ∼ 4 more events. Besides a larger data set, this work also includes an improved efficiency determination, improved likelihood analysis, and more thorough testing of systematic errors, especially with respect to the treatment of potential backgrounds to microlensing. We note that an important source of background are supernovae in galaxies behind the LMC.
Stars with initial masses 10 M ⊙ < ∼ M initial < ∼ 100 M ⊙ fuse progressively heavier elements in their centres, up to inert iron. The core then gravitationally collapses to a neutron star or a black hole, leading to an explosion -an iron-core-collapse supernova (SN) [1,2]. In contrast, extremely massive stars (M initial > ∼ 140 M ⊙ ), if such exist, have oxygen cores which exceed M core = 50 M ⊙ . There, high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs prior to oxygen ignition, and leads to a violent contraction that triggers a catastrophic nuclear explosion [3,4,5]. Tremendous energies ( > ∼ 10 52 erg) are released, completely unbinding the star in a pair-instability SN (PISN), with no compact remnant. Transitional objects with 100 M ⊙ < M initial < 140 M ⊙ , which end up as iron-core-collapse supernovae following violent mass ejections, perhaps due to short instances of the pair instability, may have been identified [6,7,8]. However, genuine PISNe, perhaps common in the early Universe, have not been observed to date. Here, we present our discovery of SN 2007bi, a luminous, slowly evolving supernova located within a dwarf galaxy (∼ 1% the size of the Milky Way). We measure the exploding core mass to be likely ∼ 100 M ⊙ , in which case theory unambiguously predicts a PISN outcome. We show that > 3 M ⊙ of radioactive 56 Ni were synthesized, and that our observations are well fit by PISN models [9,10]. A PISN explosion in the local Universe indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic limit [11], perhaps resulting from star formation processes similar to those that created the first stars in the Universe.
With the discovery of the first transiting extrasolar planetary system back in 1999, a great number of projects started to hunt for other similar systems. Because the incidence rate of such systems was unknown and the length of the shallow transit events is only a few percent of the orbital period, the goal was to monitor continuously as many stars as possible for at least a period of a few months. Small aperture, large field of view automated telescope systems have been installed with a parallel development of new data reduction and analysis methods, leading to better than 1% per data point precision for thousands of stars. With the successful launch of the photometric satellites CoRoT and Kepler, the precision increased further by one-two orders of magnitude. Millions of stars have been analyzed and searched for transits. In the history of variable star astronomy this is the biggest undertaking so far, resulting in photometric time series inventories immensely valuable for the whole field. In this review we briefly discuss the methods of data analysis that were inspired by the main science driver of these surveys and highlight some of the most interesting variable star results that impact the field of variable star astronomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.