This study tested the effects of free Ca++ on both the small-amplitude mechanical behaviour (dynamic stiffness and phase between 1 and 500 Hz) and the large-scale filament-sliding behaviour (Vmax) of single fibres of chemically-activated glycerol-extracted rabbit psoas muscle. Small-amplitude vibrations (0.1% peak-to-peak of initial length L0) were used to elicit fw, the frequency for maximum oscillatory work-production per cycle. The unloaded contraction velocity Vmax was measured during the same contractions, using the slack-test method with shortening length steps of up to 10% L0. These produced nonlinear length-time plots demonstrating that the unloaded contraction velocity was not constant as contraction progressed, but fell with time. This behaviour was approximated by two velocities, V1 the velocity observed for about the first 15 ms and V2 the velocity after this time. V1 and V2 were found to have different sensitivities to Ca++. The value of V2 fell as the level of [Ca++] was reduced, and was linearly proportional to the active tension over the range 0.2 Pmax to Pmax (where Pmax is the isometric tension for saturating amounts of Ca++). In contrast to this V1 remained insensitive to changes in [Ca++] for levels of activation corresponding to active tensions ranging from Pmax to 0.6 Pmax, and then fell as the level of activation was further reduced. It was found that the level of [Ca++] did not affect the magnitude of fw over the range of concentrations yielding active tensions from 0.2 Pmax to Pmax. These results are discussed in terms of the kinetic processes underlying transient readjustments to perturbations from isometric equilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.