We present a detailed analysis of chemical abundances in a sub-damped Lyman α absorber at z = 1.839 towards the quasar B1101−26, based on a very-high-resolution (R ∼ 75 000) and high-signal-to-noise (S /N > 100) spectrum observed with the UV Visual Echelle spectrograph (UVES) installed on the ESO Very Large Telescope (VLT). The absorption line profiles are resolved into a maximum of eleven velocity components spanning a rest-frame velocity range of ≈200 km s −1 . Detected ions include C , We calculate detailed photoionisation models for two subcomponents with Cloudy, and can rule out that ionisation effects alone are responsible for the high S/O ratio. We instead speculate that the high S/O ratio is caused by the combination of several effects, such as specific ionisation conditions in multi-phase gas, unusual relative abundances of heavy elements, and/or dust depletion in a local gas environment that is not well mixed and/or that might be related to star-formation activity in the host galaxy. We discuss the implications of our findings for the interpretation of α-element abundances in metal absorbers at high redshift.
We present a detailed analysis of a very unusual sub-damped Lyman α (sub-DLA) system at redshift z = 2.304 towards the quasar Q 0453 − 423, based on high signal-to-noise (S/N), high-resolution spectral data obtained with VLT/UVES. With a neutral hydrogen column density of log N(H ) = 19.23 and a metallicity of −1.61 as indicated by [O /H ] the sub-DLA mimics the properties of many other optically thick absorbers at this redshift. A very unusual feature of this system is, however, the lack of any C absorption at the redshift of the neutral hydrogen absorption, although the relevant spectral region is free of line blends and has very high S/N. Instead, we find high-ion absorption from C and O in another metal absorber at a velocity more than 220 km s −1 redwards of the neutral gas component. We explore the physical conditions in the two different absorption systems using Cloudy photoionisation models. We find that the weakly ionised absorber is dense and metal-poor while the highly ionised system is thin and more metal-rich. The absorber pair towards Q 0453 − 423 mimics the expected features of a galactic outflow with highly ionised material that moves away with high radial velocities from a (proto)galactic gas disk in which star-formation takes place. We discuss our findings in the context of C absorption line statistics at high redshift and compare our results to recent galactic-wind and outflow models.
Context. Feedback from massive stars affects the interstellar medium (ISM) from the immediate surroundings of the stars (parsec scales) to galactic (kiloparsec) scales. High-spatial resolution studies of H II regions are critical to investigate how this mechanism operates. Aims. We study the ionised ISM in NGC 7793 with the MUSE instrument at ESO Very Large Telescope (VLT), over a field of view (FoV) of ∼2 kpc2 and at a spatial resolution of ∼10 pc. The aim is to link the physical conditions of the ionised gas (reddening, ionisation status, abundance measurements) within the spatially resolved H II regions to the properties of the stellar populations producing Lyman continuum photons. Methods. The analysis of the MUSE dataset, which provides a map of the ionised gas and a census of Wolf Rayet stars, is complemented with a sample of young star clusters (YSCs) and O star candidates observed with the Hubble Space Telescope (HST) and of giant molecular clouds traced in CO(2–1) emission with the Atacama Large Millimeter/submillimeter Array (ALMA). We estimated the oxygen abundance using a temperature-independent strong-line method. We determined the observed total amount of ionising photons (Q(H0)) from the extinction corrected Hα luminosity. This estimate was then compared to the expected Q(H0) obtained by summing the contributions of YSCs and massive stars. The ratio of the two values gives an estimate for the escape fraction (fesc) of photons in the region of interest. We used the [S II]/[O III] ratio as a proxy for the optical depth of the gas and classified H II regions into ionisation bounded, or as featuring channels of optically thin gas. We compared the resulting ionisation structure with the computed fesc. We also investigated the dependence of fesc on the age spanned by the stellar population in each region. Results. We find a median oxygen abundance of 12 + log(O/H) ∼ 8.37, with a scatter of 0.25 dex, which is in agreement with previous estimates for our target. We furthermore observe that the abundance map of H II regions is rich in substructures, surrounding clusters and massive stars, although clear degeneracies with photoionisation are also observed. From the population synthesis analysis, we find that YSCs located in H II regions have a higher probability of being younger and less massive as well as of emitting a higher number of ionising photons than clusters in the rest of the field. Overall, we find fesc,HII = 0.67−0.12+0.08 for the population of H II regions. We also conclude that the sources of ionisation observed within the FoV are more than sufficient to explain the amount of diffuse ionised gas (DIG) observed in this region of the galaxy. We do not observe a systematic trend between the visual appearance of H II regions and fesc, pointing to the effect of 3D geometry in the small sample probed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.