Abstract. Elastic and inelastic neutron scattering differential cross sections and γ-ray production cross sections have been measured on 54,56 Fe at several incident energies in the fast neutron region between 1.5 and 4.7 MeV. All measurements were completed at the University of Kentucky Accelerator Laboratory (UKAL) using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. The facilities at UKAL allow the investigation of both elastic and inelastic scattering with nearly mono-energetic incident neutrons. Time-of-flight techniques were used to detect the scattered neutrons for the differential cross section measurements. The measured cross sections are important for fission reactor applications and also for testing global model calculations such as those found at ENDF, since describing both the elastic and inelastic scattering is important for determining the direct and compound components of the scattering mechanism. The γ-ray production cross sections are used to determine cross sections to unresolved levels in the neutron scattering experiments. Results from our measurements and comparisons to model calculations are presented.
Abstract. Elastic and inelastic neutron differential cross sections are measured at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator/) at incident energies in the fast neutron region. The laboratorys facilities and instrumentation will be described and our measurement and analysis procedures outlined. Many corrections are required for neutron scattering experiments and the analysis utilizes information from many other cross section data sets and model calculations. Exploring and understanding the limitations of the foundational information and procedures are important for controlling the accuracy of the cross section results. We are examining the limitations in neutron detection efficiency, the normalization of (n,n γ) cross sections, background reduction, spectrum stripping techniques, and attenuation and multiple scattering corrections. The resulting differential cross sections provide information on the compound elastic and coupled channels reaction mechanisms important for advanced reactor designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.