Most researchers choose the diffusion approximation to the transport equation as the model to describe photon migration in biological tissues. However, the applicability of this approximation is limited and, in certain cases, invalid. In this paper we introduce a two-dimensional, finite element-spherical harmonics (FE-P(N)) radiation transport method for the simulation of light propagation in tissue. The propagation of light is investigated first in a layered cylinder, which can be seen as a very simplistic approximation of a human head. Effects of the anisotropy factor g on the photon migration is then examined in homogeneous and heterogeneous media for different values of g and mu(s). The influence of void-like heterogeneities and channels in which absorption and scattering are very small compared with the surrounding medium on the transport of photons is also investigated. Significant differences between transport and diffusion calculations are shown to occur in all cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.