An overview on femtosecond laser pulse shaping techniques applied to control of the initial photo-physical steps involved in materials processing is presented. First, pulse shaping methodology in frequency domain is introduced and examples of shaped pulses relevant to laser microfabrication are discussed. Then, the use of tailored femtosecond pulses to control the initial steps of laser processing of high band gap materials is demonstrated. In particular, control on basic ionization processes acting as the initial photo-physical step of the ablation dynamics is exerted by highly asymmetric femtosecond laser pulse shapes generated by Third Order Dispersion (TOD).
An estimate is given for the range of specific power input over which
fully cw operation of a discharge-excited XeCl* laser may be possible. It is
suggested that premature termination of both spontaneous emission and laser
pulses at power input levels of 270 kW cm-3 can be explained in terms
of HCl deposition in the active volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.