[1] We present a comparison between WIND/SWE observations (Kasper et al., 2006) of b kp and T ?p /T kp (where b kp is the proton parallel beta and T ?p and T kp are the perpendicular and parallel proton temperatures, respectively; here parallel and perpendicular indicate directions with respect to the ambient magnetic field) and predictions of the Vlasov linear theory. In the slow solar wind, the observed proton temperature anisotropy seems to be constrained by oblique instabilities, by the mirror one and the oblique fire hose, contrary to the results of the linear theory which predicts a dominance of the proton cyclotron instability and the parallel fire hose. The fast solar wind core protons exhibit an anticorrelation between b kc and T ?c /T kc (where b kc is the core proton parallel beta and T ?c and T kc are the perpendicular and parallel core proton temperatures, respectively) similar to that observed in the HELIOS data (Marsch et al., 2004). Citation: Hellinger, P., P. Trávníček, J. C. Kasper, and A. J. Lazarus (2006), Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations, Geophys. Res. Lett., 33, L09101,
The solar wind blows outward from the Sun and forms a bubble of solar material in the interstellar medium. The termination shock occurs where the solar wind changes from being supersonic (with respect to the surrounding interstellar medium) to being subsonic. The shock was crossed by Voyager 1 at a heliocentric radius of 94 au (1 au is the Earth-Sun distance) in December 2004 (refs 1-3). The Voyager 2 plasma experiment observed a decrease in solar wind speed commencing on about 9 June 2007, which culminated in several crossings of the termination shock between 30 August and 1 September 2007 (refs 4-7). Since then, Voyager 2 has remained in the heliosheath, the region of shocked solar wind. Here we report observations of plasma at and near the termination shock and in the heliosheath. The heliosphere is asymmetric, pushed inward in the Voyager 2 direction relative to the Voyager 1 direction. The termination shock is a weak, quasi-perpendicular shock that heats the thermal plasma very little. An unexpected finding is that the flow is still supersonic with respect to the thermal ions downstream of the termination shock. Most of the solar wind energy is transferred to the pickup ions or other energetic particles both upstream of and at the termination shock.
The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on SolarProbe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are rotated relative to one another so their broad fields of view combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield and covered by SPC. Observations by SPC and SPAN produce the combined field of view and measurement capabilities required to fulfill the science objectives of SWEAP and Solar Probe Plus. SWEAP measurements, in concert with magnetic and electric fields, energetic particles, and white light contextual imaging will enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, and particle acceleration in the inner heliosphere of the solar system. SPC and SPAN are managed by the SWEAP Electronics Module (SWEM), which distributes power, formats onboard data products, and serves as a single electrical interface to the spacecraft. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution. Full resolution data are stored within the SWEM, enabling high resolution observations of structures such as shocks, reconnection events, and other transient structures to be selected for download after the fact. This paper describes the implementation of the SWEAP Investigation, the driving requirements for the suite, expected performance of the instruments, and planned data products, as of mission preliminary design review.
[1] The proton resonant firehose instability may arise in collisionless plasmas in which the proton velocity distribution is approximately bi-Maxwellian with T kp /T ?p > 1, where ? and k denote directions relative to the background magnetic field B°. Linear theory and onedimensional simulations predict that enhanced field fluctuations from the proton resonant firehose instability impose a constraint on proton temperature anisotropies of the form 1 À T ?p /T kp = S p /b kp ap where b kp 8pn p k B T kp /B°2, and the fitting parameters S p $ 1 and a p ' 0.7. Observations from the Wind spacecraft are reported here. These measurements show for the first time with a comprehensive plasma and magnetic field data set that this constraint is statistically satisfied in the solar wind near 1 AU, with best-fit values of S p = 1.21 ± 0.26 and a p = 0.76 ± 0.14.INDEX TERMS: 7871 Space Plasma Physics: Waves and instabilities; 7867 Space Plasma Physics: Wave/particle interactions; 2164 Interplanetary Physics: Solar wind plasma. Citation: Kasper, J. C., A. J. Lazarus, and S. P. Gary, Wind/SWE observations of firehose constraint on solar wind proton temperature anisotropy, Geophys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.