Polyprenol phosphate phosphoglycosyl transferases (PGTs) catalyze the first membrane-committed step in assembly of essential glycoconjugates. Currently there is no structure-function information to describe how monotopic PGTs coordinate the reaction between membrane-embedded and soluble substrates. We describe the structure and mode of membrane association of PglC, a PGT from Campylobacter concisus. The structure reveals a unique architecture, provides mechanistic insight, and identifies ligand-binding determinants for PglC and the monotopic PGT superfamily.
Development of small molecule inhibitors of protein−protein interactions (PPIs) is hampered by our poor understanding of the druggability of PPI target sites. Here, we describe the combined application of alanine-scanning mutagenesis, fragment screening, and FTMap computational hot spot mapping to evaluate the energetics and druggability of the highly charged PPI interface between Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2 like 2 (Nrf2), an important drug target. FTMap identifies four binding energy hot spots at the active site. Only two of these are exploited by Nrf2, which alanine scanning of both proteins shows to bind primarily through E79 and E82 interacting with KEAP1 residues S363, R380, R415, R483, and S508. We identify fragment hits and obtain X-ray complex structures for three fragments via crystal soaking using a new crystal form of KEAP1. Combining these results provides a comprehensive and quantitative picture of the origins of binding energy at the interface. Our findings additionally reveal non-native interactions that might be exploited in the design of uncharged synthetic ligands to occupy the same site on KEAP1 that has evolved to bind the highly charged DEETGE binding loop of Nrf2. These include π-stacking with KEAP1 Y525 and interactions at an FTMapidentified hot spot deep in the binding site. Finally, we discuss how the complementary information provided by alaninescanning mutagenesis, fragment screening, and computational hot spot mapping can be integrated to more comprehensively evaluate PPI druggability.
Ginsenoside Rg3 is a natural active ingredient that is extracted from Korean red ginseng root. It elevates the therapeutic effect of radiotherapy and chemotherapy, but previous studies found that the application of Rg3 is heavily limited by its low bioavailability and poor absorption via oral administration.To overcome these problems, Rg3-loaded PEG-PLGA-NPs (Rg3-NPs) were prepared by the modified spontaneous emulsification solvent diffusion (SESD) method, and the physicochemical characteristics of Rg3-NPs were investigated. We treated primary glioblastoma with 50 mM Rg3-NPs for 48h. We then used gene expression arrays (Illumina) for genome-wide expression analysis and validated the results for genes of interest by means of real-time PCR. Functional annotations were then performed using the DAVID and KEGG online tools. The results showed that the Rg3-NPs are slick and uniform, the average diameter of the nanoparticles is 75-90 nm, and their entrapment efficiency is 89.7 + 1.7%. MTT showed that the growth of cells can be significantly inhibited by Rg3-NPs in a dose-dependent manner. FCM testing showed Rg3-NPs can be released from the conjugate nanoparticle and react with the genes in the cell nuclei, causing changes in the gene molecules. We also found that cancer cells treated with Rg3-NPs undergo cell-cycle arrest at different checkpoints. This arrest was associated with a decrease in the mRNA levels of core regulatory genes BUB1, CDC20, TTK, and CENPE, as determined by microarray analysis and verified by real-time PCR. Furthermore, Rg3-NPs induced the expression of the apoptotic and antimigratory protein p53 in cell lines. The results of the present study, together with the results of earlier studies, show that Rg3-NPs target genes involved in the progression of the M-phase of the cell cycle. It is associated with several important pathways, which include apoptosis (p53). Rg3-NPs may be a potent cell-cycle regulation drug targeting the M-phase in glioblastoma cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.