A B S T R A C T Tryptophol (3-indole ethanol) is a compound which induces sleep, and is formed: (a) in the liver after disulfiram treatment, and (b) by the parasite in trypanosomal sleeping sickness. We prepared, purified, and characterized radiolabeled tryptophol for the purpose of defining its tissue distribution in animals. Tryptophol was found to be highly lipophilic, with an octanol: water partition coefficient of 29.8. Brain extraction, determined after intracarotid injection, was high (brain uptake index = 117+3.5%), and nonsaturable, suggesting the absence of a carrier system. After intravenous administration, tryptophol distribution to tissues correlated with relative blood flow. More than 85% of the radioactivity remaining in brain 2-5 min after intravenous injection co-migrated with tryptophol standards when analyzed by thin-layer chromatography. Other evidence suggested that tryptophol binds to serum and in vivo may be stripped from serum albumin and taken up by brain in a single capillary transit. Our study suggests that in states such as trypanosomal sleeping sickness or disulfiram treatment, remotely formed tryptophol gains ready access to brain (it is 100% cleared in a single capillary passage), and could thus cause somnolence.
A new bioassay for chemical attractants of aquatic snails demonstrated that Biomphalaria glabrata could be attracted to or trapped in the vicinity of homogenates of lettuce. Fractionation of homogenates revealed the amino acids glutamate and proline and the primary attractants. Attraction was specific for the L form of glutamate. Proline appeared to stimulate reproductive activity. Glutathione, gamma-aminobutyric acid, and a number of other compounds had no effect. Extracts of lyophilized snail tissue also attracted other snails and may thus contain pheromones. These results permit formulation and testing of controlled-release attractants designed to overcome the repellant effects of slow-release molluscicides, as well as the design of stimulants to be used with no-release poisons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.