An atomic structure model for a 25 degrees [001] symmetric tilt grain boundary in SrTiO(3) has been determined directly from experimental data with the use of high-resolution Z-contrast imaging coupled with electron energy loss spectroscopy. The derived model of the grain boundary was refined by bond-valence sum calculations and reveals candidate sites for dopant atoms in the boundary plane. These results show how the combined techniques can be used to deduce the atomic structure of defects and interfaces without recourse to preconceived structural models or image simulations.
A strategy is presented for determining sublattice polarity at defects in compound semiconductors. Core structures of 60-degree and Lomer dislocations in the CdTe/GaAs(001) system have been obtained by the application of maximum-entropy analysis to Z-contrast images (Z is atomic number) obtained in a 300-kilovolt scanning transmission electron microscope. Sixty-degree dislocations were observed to be of the glide type, whereas in the case of Lomer dislocations, both a symmetric (Hornstra-like) core and an unexpected asymmetric structure made up of a fourfold ring were seen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.