We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically-bent crystal analyzer (SBCA), and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ~5 keV to ~10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W xray tube, we find count rates for nonresonant x-ray emission spectroscopy (XES) comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For xray absorption near edge structure (XANES), the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial highpower line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10 6 -10 7 photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide or noble-metal active species.
We have recently demonstrated a very favorable, inexpensive modernization of labbased x-ray absorption fine structure (XAFS) and high-resolution x-ray emission spectroscopy (XES) using only commercially-available optics and x-ray tube sources. Here, we survey several proven instrument designs that can be readily implemented in any laboratory setting to achieve synchrotron-quality XAFS and XES for many systems in the 5 keV to 10 keV energy range. These approaches are based on our immediate experience with the development of: (1) an inexpensive, low-powered monochromator capable of performing either XAFS or XES, (2) a mid-scale XAFS user facility having 10 6 /sec flux with sub-eV bandwidth on each of two independent beamlines, and (3) multiple XES spectrometers having 3 rd -generation synchrotron performance for battery and actinide research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.