The effects of the neuromodulatory monoamine 5-HT (serotonin) on a cutaneous mechanosensory (Rohon-Beard, R-B neuron) pathway in the spinal cord of postembryonic Xenopus laevis tadpoles have been examined. In paralyzed animals, exogenous 5-HT at 1–10 microM reversibly inhibits (within 1–2 min) the activation of fictive swimming in response to electrical stimulation of R-B free nerve endings in the skin. At threshold stimulus intensities for swimming under control conditions, intracellularly recorded EPSPs in contralateral motoneurons are completely abolished by 5-HT without any obvious change in neuronal conductance or membrane potential. However, increasing the stimulus voltage can activate swimming with enhanced motor burst discharge on each cycle (Sillar et al., 1992). This suggested that 5-HT inhibits the swim-initiating pathway rather than the motor rhythm-generating circuitry itself. Extracellular recordings from the central projections of R-B neurons indicated that the amine does not impair the generation of mechanoafferent impulses or their propagation into the spinal cord. However, 5-HT application blocks impulse activity in dorsolaterally positioned sensory interneurons (DLis) that are contacted by R-B neurons, suggesting that 5-HT acts at R-B to DLi synapses in the dorsal cord. By recording with microelectrodes from DLis, we find that skin stimulus-evoked EPSPs at this first-order synapse in the swim- initiating pathway are reversibly suppressed by 5-HT. No obvious change in DLi membrane potential or conductance could be detected during the inhibition, suggesting a presynaptic site of action for 5-HT. To investigate this suggestion further, the effects of 5-HT on the spontaneous release of R-B sensory transmitter (excitatory amino acid, EAA) were examined, again by recording postsynaptically from DLis. In quiescent preparations, DLis receive spontaneous glycinergic, GABAergic, and EAA receptor-mediated PSPs. The inhibitory potentials are abolished by strychnine and curare, respectively. The excitatory potentials that remain are not blocked by application of the calcium channel blocker cadmium chloride at 1 mM, but are suppressed by the EAA receptor antagonist kynurenic acid. They therefore resemble the TTX- resistant EPSPs described previously in Xenopus DLis (Sillar and Roberts, 1991), which are presumed to arise from the spontaneous liberation of EAA transmitter from R-B terminals. Bath application of 5- HT dramatically reduces the rate of occurrence of these spontaneous EPSPs consistent with a presynaptic locus for the inhibitory effects of 5-HT.(ABSTRACT TRUNCATED AT 400 WORDS)
The musculature and associated skeleton, peripheral nervous system, and central projections of motor and sensory neurones of the two basal (thoracic and coxal) segments of the shore crab leg (fifth pereiopod, P5) were examined in vivo and with methylene blue or cobalt staining. Each of the four main basal muscles, promotor/remotor, levator/depressor, controlling the thoracico-coxal (T-C) and coxo-basal (C-B) limb joints, respectively, comprises several more or less discrete fibre bundles (total 14), with little morphological segregation of different functional groups. The innervation to the basal leg region is carried in two nerve roots arising from the thoracic ganglion. The anterior Th-Cx root carries both sensory and motor axons, while the posterior Th-Cx root is purely motor. Three previously undescribed sensory branches (two "epidermal" nerves and an "accessory" branch), in addition to that innervating the coxobasal chordotonal receptor, have been found in the distal part of the anterior Th-Cx root. Two clusters of 10 to 15 multipolar somata (diam. 30-125 micron) are located proximally at the bifurcation of the accessory nerve and distally where the latter enters the basipodite. The cell bodies (diameter 20-80 micron) of basal leg motoneurones (total ca. 30) lie in the dorsal cortex of the ganglion, with somata of functionally related motoneurones tending to form discrete structural groups. The morphology of individual motoneurones conforms to the general arthropod pattern. All are confined to the ipsilateral hemiganglion and their main neuropilar processes run parallel and in close apposition to each other with overlapping dendritic structures. Sensory projections arising from the CB chordotonal organ also ramify in the region of the neuropile invaded by motoneurones. The possible physiological significance of such structural associations within the CNS is discussed, as are the functional implications of basal limb anatomy in general.
During the first 24 h of post-embryonic development in Xenopus laevis, a rapid change in the neural activity underlying swimming occurs in which the duration of ventral root discharge on each cycle increases from a single compound impulse to discrete bursts of activity. Moreover, this change in motor output progresses rostrocaudally, suggesting that it could result from the influence of a descending neural pathway upon the spinal rhythm-generating circuitry during early post-embryonic development. To begin to examine whether serotonergic neurons of brainstem raphe nuclei might have a role in this swimming development, we have studied the effects of 5-hydroxytryptamine (5HT) on fictive swimming in embryonic and larval animals. As previously demonstrated for other vertebrate locomotor rhythms, we find that bath-applied 5HT enhances the duration of motor activity on each cycle of larval fictive swimming. In addition, our results show that the sensitivity of the swimming rhythm to exogenous 5HT follows a strict rostrocaudal gradient. In young embryos (stages 32-36) 5HT does not affect the duration of ventral root impulses per cycle; by the time of hatching (stage 37/38), rostral but not caudal discharge is enhanced, and by stage 42 (24 h post-hatching) 5HT can increase motor burst durations along most of the length of the animal. These reversible changes induced by bath-applied 5HT closely resemble the normal rostrocaudal development of burst discharge during swimming in animals some 12 h older.(ABSTRACT TRUNCATED AT 250 WORDS)
The post-embryonic development of 'fictive' swimming in immobilized Xenopus laevis tadpoles has been examined during the first day of larval life. In Xenopus embryos (stage 37-38; Nieuwkoop & Faber 1956), the rhythmic ventral root activity underlying swimming occurs as single brief (ca. 7 ms) compound impulses on each cycle. However, by stage 42 (about 24 h after hatching), ventral root discharge consists of bursts lasting around 20 ms per cycle. In addition to increased burst duration in each cycle of larval swimming, the range of cycle periods within an episode increases, although mean period values (ca. 70-80 ms) remain similar to those of the younger animal. Consequently, motoneurons at developmental stage 42 are active during swimming for a greater percentage (ca. 25%) of cycle time than at stage 37-38 (ca. 10%). Developmental stage 40 (ca. 12 h post-hatching) is an intermediate stage in rhythm development. Ventral root discharge varies from bursts of 10-20 ms at the start of an episode to embryonic (ca. 7 ms) spikes at the end of an episode. Furthermore, discharge varies from bursts of activity in rostral segments of stage 40 larvae to 7 ms spikes more caudally, as in embryos. The data thus suggest that Xenopus swimming rhythmicity develops relatively rapidly, along a rostrocaudal gradient, and may involve acquisition of multiple spiking in spinal neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.