Snowpack water equivalent (SWE) is a key variable for water resource management in snow-dominated catchments. While it is not feasible to quantify SWE at the catchment scale using either field surveys or remotely sensed data, technologies such as airborne LiDAR (light detection and ranging) support the mapping of snow depth at scales relevant to operational water management. To convert snow depth to water equivalent, models have been developed to predict SWE or snowpack density based on snow depth and additional predictor variables. This study builds upon previous models that relate snowpack density to snow depth by including additional predictor variables to account for (1) long-term climatologies that describe the prevailing conditions influencing regional snowpack properties, and (2) the effect of intra-and interyear variability in meteorological conditions on densification through a cumulative degree-day index derived from North American Regional Reanalysis products. A nonlinear model was fit to 114 506 snow survey measurements spanning 41 years from 1166 snow courses across western North America. Under spatial cross-validation, the predicted densities had a root-mean-square error of 47.1 kg m À3 , a mean bias of À0.039 kg m À3 , and a Nash-Sutcliffe Efficiency of 0.70. The model developed in this study had similar overall performance compared to a similar regression-based model reported in the literature, but had reduced seasonal biases. When applied to predict SWE from simulated depths with random errors consistent with those obtained from LiDAR or Structure-from-Motion, 50% of the SWE estimates for April and May fell within À45 to 49 mm of the observed SWE, representing prediction errors of À15% to 20%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.