A bstTactCREME96 is an update of the Cosmic Ray Effects on Micro-Electronics code, a widely-used suite of programs for creating numerical models of the ionizingradiation environment in near-Earth orbits and for evaluating radiation effects in spacecraft. CREME96, which is now available over the World-Wide Web (WWW) at http://crsp3.nrl.navy.mil/creme96/, has many significant features, including (1) improved models of the galactic cosmic ray, anomalous cosmic ray, and solar energetic particle ("flare") components of the near-Earth environment;(2) improved geomagnetic transmission calculations; (3) improved nuclear transport routines; (4) improved singleevent upset (SEU) calculation techniques, for both protoninduced and direct-ionization-induced SEUs; and (5) an easy-to-use graphical interface, with extensive on-line tutorial information. In this paper we document some of these improvements. b ! ~ I I
We present an idealized model simulating the coupled evolution of the distributions of multispecies shockaccelerated energetic ions and interplanetary Alfvén waves in gradual solar energetic particle (SEP) events. Particle pitch-angle diffusion coefficients are expressed in terms of wave intensities, and wave growth rates in terms of momentum gradients of SEP distributions, by the same quasilinear theory augmented with resonance broadening. The model takes into consideration various physical processes: for SEPs, particle motion, magnetic focusing, scattering by Alfvén waves, solar wind convection, and adiabatic deceleration; for the waves, WKB transport and amplification by streaming SEPs. Shock acceleration is heuristically represented by continuous injection of prescribed spectra of SEPs at a moving shock front. We show the model predictions for two contrasting sets of SEP source spectra, fast weakening and softening in one case and long lasting and hard in the other. The results presented include concurrent time histories of multispecies SEP intensities and elemental abundance ratios, as well as sequential snapshots of the following: SEP intensity energy spectra, Alfvén wave spectra, particle mean free paths as functions of rigidity, and spatial profiles of SEP intensities and mean free paths. Wave growth plays a key role in both cases, although the magnitude of the wave growth differs greatly, and quite different SEP abundance variations are obtained. In these simulations, the maximum wave growth rate is large, but small relative to the wave frequency, and everywhere the total wave magnetic energy density remains small relative to that of the background magnetic field. The simulations show that, as the energetic protons stream outward, they rapidly amplify the ambient Alfvén waves, by several orders of magnitude in the inner heliosphere. Energetic minor ions find themselves traveling through resonant Alfvén waves previously amplified by higher velocity protons. The nonuniformly growing wave spectra alter the rigidity dependence of particle scattering, resulting in complex time variations of SEP abundances at large distances from the Sun. The greatly amplified waves travel outward in an expanding and weakening '' shell,'' creating an expanding and falling '' reservoir '' of SEPs with flat spatial intensity profiles behind, while in and beyond the shell the intensities drop steeply. The wave-particle resonance relation dynamically links the evolving characteristics of the SEP and Alfvén wave distributions in this new mode of SEP transport. We conclude that wave amplification, the counterpart to the scattering of streaming particles required by energy conservation, plays an essential role in the transport of SEPs in gradual SEP events. The steep proton-amplified wave spectra just upstream of the shock suggest that they may also be important in determining the elemental abundances of shock-accelerated SEP sources.
We use combined high-cadence, high-resolution, and multi-point imaging by the Solar-Terrestrial Relations Observatory (STEREO) and the Solar and Heliospheric Observatory to investigate the hour-long eruption of a fast and wide coronal mass ejection (CME) on 2011 March 21 when the twin STEREO spacecraft were located beyond the solar limbs. We analyze the relation between the eruption of the CME, the evolution of an Extreme Ultraviolet (EUV) wave, and the onset of a solar energetic particle (SEP) event measured in situ by the STEREO and near-Earth orbiting spacecraft. Combined ultraviolet and white-light images of the lower corona reveal that in an initial CME lateral "expansion phase," the EUV disturbance tracks the laterally expanding flanks of the CME, both moving parallel to the solar surface with speeds of ∼450 km s −1. When the lateral expansion of the ejecta ceases, the EUV disturbance carries on propagating parallel to the solar surface but devolves rapidly into a less coherent structure. Multi-point tracking of the CME leading edge and the effects of the launched compression waves (e.g., pushed streamers) give anti-sunward speeds that initially exceed 900 km s −1 at all measured position angles. We combine our analysis of ultraviolet and white-light images with a comprehensive study of the velocity dispersion of energetic particles measured in situ by particle detectors located at STEREO-A (STA) and first Lagrange point (L1), to demonstrate that the delayed solar particle release times at STA and L1 are consistent with the time required (30-40 minutes) for the CME to perturb the corona over a wide range of longitudes. This study finds an association between the longitudinal extent of the perturbed corona (in EUV and white light) and the longitudinal extent of the SEP event in the heliosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.