This is the first report characterizing local anodic oxidation (LAO) lithography performed using conductive monolithic polycrystalline diamond (MD) and conductive polycrystalline diamond-coated (DC) tips and comparing it to the diamond-like carbon-coated and metal-coated silicon tips. The range and the rate of increase in the lithographic linewidth and height with tip bias (dw/dV and dh/dV) differed based on the tip material. The DC tips resulted in wider and taller lines and a higher dw/dV and dh/dV compared to metal-coated tips with a similar force constant (k(Avg)). The metal-coated and the DC tips with comparable k(Avg) showed comparable threshold voltages, whereas the MD tips with similar k(Avg) showed a higher threshold voltage. The MD tips exhibited less than half the height and nearly half the dw/dV and dh/dV obtained with the metal-coated tips with similar k Avg, thus also resulting in a smaller width at -10 V. The linewidths were found to be proportional to the inverse of the log of write speed(v) for all the tips; however, the proportionality constant varied with tip material; the DC tips had larger values, and the MD and the metal-coated tips had comparable values. When varying the speed, the height was found to be a sigmoidal function of width, with the MD probes achieving lower height compared to the metal-coated and the DC tips with comparable k(Avg). This study expands the application of monolithic conductive polycrystalline diamond (PCD) probes with outstanding wear resistance to fine LAO lithography.
Heat transfer information relating to the shutdown mechanism of the Borax II reactor is discussed. Pertinent quantities are presented as a fimction of time for a typical power transient. A proportionality is established between the transient steam pressure pulse and-kex-'^'h.& heat transfer from fuel plate to water is divided into conduction and boiling phases. Conduction and boiling are shown to exhibit equilibrium behavior except during the transient steam pressure pulse. Because of the incompleteness of the data a definitive description of the phenomena during this pulse is not possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.